Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Organ-Simulator revolutioniert Chirurgen-Training

12.08.2002


Neuartige Materialen und Computer gesteuerte Sensoren schaffen reale Bedingungen

... mehr zu:
»Gewebe »Sensor »Simulator

Forscher der University of Buffalo (UB) entwickeln einen Simulator, der das chirurgische Training revolutionieren soll. Zu diesem Zweck werden neuartige Materialien mit Computer gesteuerten Sensoren verbunden. Simuliert werden "Pseudo-Organe", die fühlen, riechen und ähnlich wie Gewebe menschlicher Organe reagieren. Projektleiter David Fineberg will aber nicht nur das chirurgische Training verbessern, sondern auch die Art und Weise ändern, wie Daten quer durch viele Industriezweige und Disziplinen übertragen werden. Das Projekt wird vom New York State Office of Science Technology and Academic Research (NYSTAR) mit einer Mio. Dollar unterstützt.

Fineberg arbeitet bereits seit 1993 mit UB-Computerspezialisten, Ingenieuren, Materialexperten, Pharmafirmen sowie einem Veterinärinstitut zusammen, um eine chirurgische Version eines Flugsimulators mit dem Namen "The Living Anatomy Program" zu entwickeln. Vorteil ist laut Fineberg, dass mit Unterstützung des Simulators reale Bedingungen geschaffen werden. "Zukünftige Chirurgen arbeiten mit Leichenteilen, die kalt, hart und konserviert sind. Durch den Simulator wird gelehrt, wie sich z.B. eine Nierenruptur anfühlt oder wie ein zerrissenes Blutgefäß in einem blutgefüllten Abdomen lokalisiert wird", erklärte Fineberg. Der Mediziner weiß zwar, dass Organmodelle per se nicht neu sind, glaubt aber, dass sein Modell alles Bestehende in den Schatten stellen wird.


Fineberg hat bereits Leber- und Nierenformen auf Basis menschlicher Modelle entwickelt und arbeitet nun mit dem Werkstoff-Unternehmen Polytek zusammen. Man sucht nach Polymeren, die sich wie lebende Gewebe anfühlen und die Formen füllen sollen. Das Washington State University College of Veterinary Medicine regelt zurzeit vertraglich eine Partnerschaft mit Fineberg, um ein Labor zu errichten, indem derartige Modelle alternativ zu Hunden für chirurgische Übungszwecke eingesetzt werden.

Der Direktor des Virtual Reality Labors der UB Thenkurussi Kesavadas wurde mit der Übersetzung der taktilen Information in elektronische Daten beauftragt. Dabei sollen die Eigenschaften des menschlichen Gewebes erfasst werden. Dies geschieht mit Hilfe eines "Virtual-Reality"-Handschuhs. Der Handschuh sammelt Daten über jene Objekte, die der Träger über Sensoren an den Handschuh-Enden berührt. Mittels dieser Informationen entwickelt Kesavadas eine Datenbank, die die biomechanischen Eigenschaften von weichem Gewebe unter verschiedenen Konditionen beschreibt. Um die realen Bedingungen von Operationssälen zu simulieren, wird eine Computer-generierte Umwelt geschaffen. Diese inkludiert Geräusche, gehende Personen und Algorithmen von stattfindenden Handlungen.

Im ersten Schritt soll das Simulations-Modell in Lehrprogrammen eingesetzt werden. Fineberg will diese Programme und die Technologie-Plattform vermarkten. Dadurch sollen Gelder für das Finish des ersten Prototypen lukriert werden.

Sandra Standhartinger | pte.online
Weitere Informationen:
http://www.buffalo.edu/
http://www.polytek.com/

Weitere Berichte zu: Gewebe Sensor Simulator

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Speiseröhrenkrebs einfacher erkennen
06.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Neues Labor für die Aufbautechnik von ultradünnen Mikrosystemen
21.02.2017 | Hahn-Schickard

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise