Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rhythmischer Herzschlag dank Bioengineering

06.08.2002


US-Forscher präsentieren bioartifizielles Pumpmodell

Ein interdisziplinäres Forscherteam aus Kardiologen und Orthopäden der University of North Carolina (UNC) hat auf biotechnischem Weg einen sich rhythmisch zusammenziehenden Herzmuskel entwickelt. Das Modelsystem ist ein so genanntes bioartifizielles Trabekel, also an der Innenfläche der Herzkammern vorspringende, netzförmig verbundene Muskelbälkchen. Obwohl sich das Modell noch weit von der klinischen Applikation bei Menschen entfernt befindet, soll es Forscher bei der Untersuchung von Herzerkrankungen wie z.B. elektrische und mechanische Störungen unterstützen. Details des Herzmodells wurden auf dem Weltkongress für Biomechanik in Calgary/Kanada präsentiert.

"Ziel der Untersuchung war es nach einer Möglichkeit zu suchen, wie man isolierte Herzzellen nutzen kann, damit sich diese unter geeigneten Bedingungen aneinander heften und im gleichen Zug ein funktionierendes künstliches Gewebe bilden", erklärte Wayne E. Cascio auf dem Kongress. Grundgedanke dabei war, Zellen in einer dynamischen Umwelt auf einem flexiblen Substrat zu züchten. Dann sollten die Gewebezellen "auf irgend eine Art und Weise" gestreckt werden, um den Effekt der mechanischen Kräfte auf Sehnen, Knochen und Knorpel zu simulieren. Zudem sollte der so genannte "Scherstress" hinzugefügt werden. Der "Scherstress" tritt im Zuge des Blutflusses durch die Gefäße auf. "Die Zusammenarbeit zwischen Kardiologen und Orthopäden setzte dann ein, als man dachte, es sei möglich, Herzmuskelzellen zu züchten und daraus ein Herzmuskelgewebe ähnliches Material zu entwickeln", erklärte der Forscher Joseph Brackhan, der die Herzmuskelzellen aus einer ein Tag alten Ratte isolierte.

Die Zellen wurden zu diesem Zweck mit einer Kollagenlösung und Serum gemischt. Anschließend gelierte die Mixtur unter Inkubation in einer "Flexcell Tissue Train Plate" (Bild). Diese Vorrichtung eignet sich als Rahmen, in dem sich Zellen in einem flüssigen Kollagen-Gel selbstständig remodellieren und eine Gewebe-artige Struktur bilden. Nach rund vier Tagen der Kultivierung wandern die Herzzellen in das Zentrum des Gels und formen eine dichte "Gewebe-Kordel". Dieser Strang zieht sich rhythmisch mit 100 Schlägen pro Minute zusammen.

Langzeit-Ziel der Forscher ist es ein Modelsystem zu entwickeln, um Herzerkrankungen zu untersuchen. "Der Schwerpunkt liegt auf der Entwicklung von Herzmuskelzellen mit elektrischen und kontraktilen Eigenschaften. Dafür sollen die Zellen genmanipuliert bzw. in ein funktionstüchtiges Gewebe umgewandelt werden", so Cascio. Die Entwicklung eines Gewebepflasters, das auf die Oberfläche des Herzens geklebt wird, um in das Organ zu Reparatur-Zwecken hinein zu wachsen, liegt im Zuge ihrer Forschungstätigkeit noch in weiter Ferne.

Sandra Standhartinger | pte.online
Weitere Informationen:
http://www.med.unc.edu/

Weitere Berichte zu: Gewebe Herzmuskelzelle Herzschlag Modelsystem Orthopäde

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Speiseröhrenkrebs einfacher erkennen
06.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Neues Labor für die Aufbautechnik von ultradünnen Mikrosystemen
21.02.2017 | Hahn-Schickard

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise