Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verstärkung in der Gehirnforschung - Forschungszentrum Jülich erhielt 4-Tesla-MRT

12.07.2002


Im Forschungszentrum Jülich beginnt ein neues Kapitel der Hirnforschung: Seit dem 10. Juli steht dort ein neuer Magnetresonanz-Tomograph (MRT). Mit einer magnetischen Feldstärke von 4 Tesla wird das Ganzkörper-MRT das stärkste seiner Art in Europa sein - nur in Großbritannien gibt es noch ein vergleichbares Gerät. Das jeweils zur Hälfte aus Mitteln der Deutschen Forschungsgemeinschaft (DFG) und UMTS-Geldern finanzierte rund 3,5 Mio. Euro teure Gerät werden die Physiker und Neurowissenschaftler des Forschungszentrums sowie Forscher der RWTH Aachen und der Universitäten Düsseldorf, Köln und Bonn nutzen, um neue Erkenntnisse über die Funktionsweise des menschlichen Gehirns zu gewinnen.



Mittels Magnetresonanz-Tomografie (MRT) erhalten die Wissenschaftler Bilder vom menschlichen Gehirn und können erkennen, welche Bereiche des Gehirns bei bestimmten Denkprozessen aktiv sind. Nach einem Schlaganfall können Funktionsausfälle mit dieser Methode genau lokalisiert werden. Das bildgebende Verfahren kommt ohne Strahlungseinwirkung oder radioaktive Substanzen aus. So können einzelne Patienten oder Probanden wiederholt und auch über längere Zeiträume untersucht werden. Dies ermöglicht auch Untersuchungen während der Therapie nach einem Schlaganfall.



Aufgrund seiner deutlich höheren Feldstärke im Vergleich zu seinem Jülicher Vorläufer, dem 1,5-Tesla-MRT, ist das neue Gerät sehr viel empfindlicher und kann Signale aufnehmen, die bei einer Feldstärke von 1,5 Tesla ganz einfach im Rauschen verschwinden würden. Das verbesserte Signal-zu-Rausch-Verhältnis eröffnet den Physikern einzigartige Möglichkeiten: Neue funktionell bildgebende Methoden ermöglichen den Wissenschaftlern völlig neue Untersuchungen der Hirnstruktur und -funktion und damit eine Vielzahl neuer neurowissenschaftlicher Erkenntnisse.

Mit dem 4-Tesla-MRT können die Wissenschaftler nun auch Substanzen ins Visier nehmen, die bei 1,5 Tesla nur ein sehr schwaches Signal zeigten, zum Beispiel Natrium, welches zur Signalübertragung zwischen Nervenzellen nötig ist.
Die höhere Feldstärke des neuen Gerätes liefert den Neurologen zudem einen besseren Kontrast zwischen grauer und weißer Hirnsubstanz. Hirnbereiche zur Bewegungssteuerung können nun besser lokalisiert werden.


Mit dem 1,5-Tesla-MRT haben die Jülicher Hirnforscher beispielsweise den Effekt unterschiedlicher Sauerstoffgehalte im Blut gemessen. Arbeitende Gehirnregionen haben einen höheren Sauerstoffverbrauch und mit der MRT können aktive Bereiche von inaktiven unterschieden werden. Für eine eindeutige Zuordnung mussten jedoch bisher oft die Signale mehrer Personen summiert und gemittelt werden. Mit dem neuen 4-Tesla-Gerät erhalten die Wissenschaftler auch bei Messungen an einer einzelnen Person ausgeprägte Signale. Dies ermöglicht individuelle Untersuchungen mit höherer Aussagekraft als bisher.

In Kooperation mit den Neurologen der RWTH Aachen untersuchen die Wissenschaftler neurobiologische Grundlagen und Behandlungsmöglichkeiten bei Funktionsausfällen durch einen Schlaganfall oder Hirntumore, wie zum Beispiel Störungen der Motorik oder der visuell-räumlichen Wahrnehmung. Auch Erkenntnisse über die Gehirnfunktionen kranker Menschen sind differenziert möglich. So können die Psychiater nun beispielsweise untersuchen, wie das Gehirn bei Schizophrenie oder Gewalttätigkeit auf bestimmte emotionalen Situationen reagiert.

"Der Schwerpunkt unserer neurowissenschaftlichen Arbeit mit dem neuen Gerät wird aber zunächst auf der Forschung am normal funktionierenden menschlichen Gehirn liegen", erklärt Dr. N. Jon Shah, Projektleiter der MRT-Gruppe im Institut für Medizin. "Denn es sind noch viele Bereiche zu wenig erforscht."

Für die Jülicher Forscher geht mit der Verwirklichung dieses Großprojekts ein lange gehegter Wunsch in Erfüllung. Die Planungen hatten bereits vor drei Jahren begonnen. Nach einer Ausschreibung der Deutschen Forschungsgemeinschaft (DFG) für die Errichtung von drei bis vier Hochfeldgeräten in Deutschland ist das Forschungszentrum nun in der glücklichen Lage, das einzige 4Tesla-Gerät in Deutschland zu besitzen.

Peter Schäfer | idw
Weitere Informationen:
http://www.fz-juelich.de/aktuelles/pressemitteilungen.html

Weitere Berichte zu: 4-Tesla-MRT Feldstärke MRT Schlaganfall Tesla

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Lösung gegen Schwefelsäureangriff auf Abwasseranlagen
23.02.2018 | Technische Universität Graz

nachricht Forschende der Uni Kiel entwickeln extrem empfindliches Sensorsystem für Magnetfelder
15.02.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics