Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Abstrakt und dabei realitätsnah

04.07.2002


Erst Mathematik ermöglicht den Einsatz bildgebender Verfahren in der Medizin


Mathematik gehört nicht unbedingt zu den Lieblingsfächern der meisten Schüler. Und auch im Studium tun sich viele mit ihr schwer. Sie ist sehr abstrakt, scheint keinen Bezug zur Realität zu haben und ist für die meisten nur eine Last. Von der Bedeutung der Mathematik für alltägliche Probleme haben die meisten leider nur sehr vage oder sogar völlig falsche Vorstellungen. Dabei wären viele technische Entwicklungen ohne Mathematik undenkbar gewesen.

"Selbst beim Telefonieren, Fernsehen oder Hören einer CD steckt viel Mathematik dahinter", meint Prof. Dr. Frank Natterer, Dekan des Fachbereichs Mathematik und Informatik und Leiter des Instituts für Numerische und instrumentelle Mathematik der Universität Münster. Jeder verwendet digitale Systeme beispielsweise bei der Nutzung des Internets, beim Versenden von SMS oder beim Autofahren mit einem Navigationssystem und profitiert damit von den Erkenntnissen jahrzehntelanger mathematischer Forschung. Vor allem in der medizinischen Diagnostik müssen zur Auswertung von computertomographischen Daten schwierige mathematische Probleme gelöst werden, bevor man Bilder vom Inneren des menschlichen Körpers erhält und Diagnosen stellen kann.


Seit über 25 Jahren beschäftigt sich Natterer damit, solche bildgebende Verfahren nicht nur für medizinische Anwendungen, sondern auch im Bereich der Seismologie, der zerstörungsfreien Materialprüfung und der industriellen Fertigung zu entwickeln und zu optimieren. "Ich weiß noch, wie ich 1975 um Rat bei einem Antennenproblem in der Radar-Technik gebeten wurde", erzählt Natterer. "Kurz danach nahm ich an einem Kolloquium zur Computertomographie teil und stellte fest, dass beiden Gebieten dieselben mathematischen Probleme zu Grunde lagen."

Beim Radar werden elektromagnetische Wellen von einer Antenne ausgesandt und die reflektierten Signale analysiert, um zum Beispiel die Beschaffenheit des Geländes ausfindig zu machen. Allerdings ist es sehr kompliziert, aus den überlagerten Wellen die Lage der reflektierenden Objekte zu berechnen. Auch in der Computertomographie besteht das Problem darin, aus zweidimensionalen Schnitten dreidimensionale Bilder, in diesem Fall eines Patienten, zu rekonstruieren. Fächerförmig werden Strahlen von einer Röntgenröhre ausgesandt, durchdringen den Körper und werden durch das Gewebe abgeschwächt. Knochen schwächen den Strahl stärker als Muskeln, Tumore haben einen anderen Dämpfungskoeffizienten als gesundes Gewebe. Da die Intensität jedes austretenden Strahls nur einen Mittelwert der Gewebeeigenschaften wiedergibt, ist eine große Zahl von Strahlen nötig, die den Körper aus verschiedenen Richtungen durchleuchten. "Mathematisch sehr anspruchsvolle Methoden kommen zum Zug, wenn man dieses Problem lösen will", meint Natterer.

Von großer Bedeutung für die Weiterentwicklung dieser bildgebenden Verfahren war dabei Natterers Arbeit, verschiedene Ansätze aus den unterschiedlichsten Fachrichtungen mathematisch zu vereinheitlichen und in Büchern zu veröffentlichen. Ziel der Forschung ist es, immer bessere mathematische Modelle zu entwikkeln. Je weniger Daten für die dreidimensionale Rekonstruktion nötig sind, desto geringer ist auch die Strahlenbelastung für den Patienten.

Wie wichtig mathematische Methoden sind, zeigt die Zahl der Industriekontakte, die Natterer pflegt. "Ständig fragen Firmen an, ob wir ihnen bei einem Problem helfen können", erzählt Natterer. Es geht dabei längst nicht mehr nur um die Computertomographie. Zusammen mit amerikanischen Firmen arbeitet Natterer unter anderem an der Verbesserung von Ultraschalluntersuchungen. "Die Schallwellen bewegen sich im Gegensatz zu Röntgenstrahlen nicht geradlinig durch den Körper, sondern auf zunächst unbekannten, gekrümmten Pfaden", erzählt er begeistert. "Es handelt sich dabei um viel komplexere Probleme, die gelöst werden müssen."

Wichtig ist bei dieser Arbeit, dass man sich schnell in neue Themen hineinarbeitet, gut zuhören kann und grundlegende Physikkenntnisse besitzt. "Leider beschäftigen sich sehr wenig Studenten mit diesem Gebiet", sagt Natterer. Die meisten würden bei der "reinen" Mathematik bleiben oder später in die Datenverarbeitung gehen. Vielleicht ändert sich das, wenn der Bedarf nach Mathematikern für den Einsatz bildgebender Verfahre

Brigitte Nussbaum | idw

Weitere Berichte zu: Computertomographie Mathematik Strahl

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Innovation: Optische Technologien verändern die Welt
01.12.2016 | Karlsruher Institut für Technologie

nachricht SeaArt-Projekt startet mit Feldversuchen an Nord- und Ostsee
18.11.2016 | Hochschule Hannover

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie