Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Universelles Herstellungsverfahren für Nanoröhrchen

14.06.2002


Neue Methode zur Herstellung von Nanotubes entwickelt / Vielfältige Anwendungen von Optoelektronik bis Nanobiotechnologie absehbar


Nanoröhrchen mit Durchmessern von einigen wenigen bis zu einigen Hundert Nanometern besitzen ein großes Anwendungspotential, beispielsweise als winzige elektronische Bauteile, als Reservoir für Wirkstoffe, als Sensoren oder als Mikroküvetten in der kombinatorischen Chemie. Bislang konnten diese jedoch nur aus einer begrenzten Anzahl von Materialien, wie etwa Kohlenstoff, hergestellt werden. Viele interessante Materialien mit vorteilhaften Eigenschaften, beispielsweise Polytetrafluoroethylen (Teflon), Leuchtpolymere, Copolymere oder Materialmischungen mit definierter Zusammensetzung ließen sich nicht zu Nanoröhrchen formen. Chemikern und Physikern vom Max-Planck-Institut für Mikrostrukturphysik in Halle/Saale und dem Institut für Physikalische Chemie der Philipps-Universität Marburg ist es jetzt gelungen, ein universell einsetzbares Verfahren zu entwickeln, mit dem Nanoröhrchen aus einer Vielzahl von Stoffen oder Stoffmischungen hergestellt werden können sind (Science, 14 Juni 2002).

Zur Herstellung der Nanoröhrchen verwendeten die Forscher kleine Plättchen aus Silizium- oder Aluminiumoxid, die von hochgeordneten Strukturen aus winzigen Poren durchzogen sind. Diese Poren wurden durch Selbstorganisation, Lithographie oder durch Kombination beider Methoden erzeugt. Werden flüssige Polymere oder Lösungen, die Polymere enthalten, in Kontakt mit diesen Porenstrukturen gebracht, bildet sich ein etwa 20 Nanometer (ein Nanometer ist ein Milliardstel Meter) dünner Film auf den Porenwänden. Durch Kühlen oder Verdampfen des Lösungsmittels erstarrt dieser Film und bildet Nanoröhrchen. Ihre Gestalt und Abmessung wird durch die Form und Größe der Poren bestimmt, d. h., die verwendeten Porenstrukturen wirken als Schablone. Wird nun das Material, aus dem die Porenstruktur besteht, selektiv entfernt, bleiben die Nanotubes zurück. Je nach verwendeter Porenstruktur sind die Röhrchen alle gleich groß. Auf diese Weise ist es sogar möglich, hochgeordnete Anordnungen zueinander paralleler Nanotubes herzustellen.


Abb. 1: (PS800) Nanoröhrchen-Arrays aus Polystyrol in verschiedenen Vergrößerungen. Die Röhrchen haben einen Durchmesser von circa 400 Nanometern.
Foto: Max-Planck-Institut für Mikrostrukturphysik


Erstmals konnten die Wissenschaftler Nanotubes aus Polytetrafluorethylen (Teflon) herstellen, einem Polymer, das wegen seiner besonderen Eigenschaften bisher nur schwer im Nanometer-Bereich strukturiert werden konnte, aber ein großes Anwendungspotential besitzt. Im Prinzip können jetzt Nanoröhrchen aus praktisch jedem als Schmelze oder aus Lösung verarbeitbaren Polymer erzeugt werden, beispielsweise auch aus Polystyrol oder Polymethylmethacrylat.


Abb. 2: (PS40) Einzelne Polystyrol-Nanoröhrchen
Foto: Max-Planck-Institut für Mikrostrukturphysik


Ein großer Vorteil der neuen Methode besteht darin, dass man den verwendeten Polymeren auch andere Stoffe beimischen und somit Komposit-Nanoröhrchen herstellen kann. Deren Wände können zum Beispiel aus einer Mischung aus Polystyrol und Palladium bestehen, einem Metall, das in der Katalyse, der Sensorik und in Brennstoffzellen von großer Bedeutung ist.

Bereits jetzt ist eine Vielzahl von Anwendungsmöglichkeiten für die neuen Nanoröhrchen bzw. die neu entwickelte Methode zur Nanostrukturierung absehbar. So könnten poröse Materialien durch innere Beschichtungen spezielle Funktionen erhalten, um zum Beispiel als durchstimmbare photonische Kristalle in der integrierten Optik oder als spezielle Trägerplatten (Arrays) mit Millionen von Mikrokavitäten in der kombinatorischen Chemie eingesetzt zu werden.

Auf diese Weise polymerbeschichtete Porenstrukturen können aber auch - wegen ihrer Biokompatibilität - dazu dienen, die Blut-Hirn-Schranke zu analysieren. Die Blut-Hirn-Schranke blockiert den Übertritt der meisten Substanzen, also auch von pharmazeutischen Wirkstoffen, ins Gehirn. Im Rahmen eines BMBF-geförderten Projekts zur Nanobiotechnologie unter Leitung der Universität Münster bringen die Forscher dazu lebende Zellen auf polymerbeschichtete Porenstrukturen auf und untersuchen den Wirkstoff-Transport durch diese Zellen in die darunter befindlichen Poren.


Dieses Projekt wurde durch die Max-Planck-Gesellschaft sowie durch die Deutsche Forschungsgemeinschaft (DFG) gefördert.


Weitere Informationen erhalten Sie von:

Dr. Ralf Wehrspohn
Max-Planck-Institut für Mikrostrukturphysik, Halle/Saale
Tel.: (03 45) 55 82 - 7 26
Fax: (03 45) 5 51 12 23
E-Mail: wehrspoh@mpi-halle.mpg.de

und

Martin Steinhart
Institut für Physikalische Chemie der Philipps-Universität, Marburg
Tel.: (06421) 28-22362
Fax: (06421) 28-28916
Email: steinhar@mailer.uni-marburg.de


Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.nanowetting.com

Weitere Berichte zu: Nanometer Nanoröhrchen Nanotube Polymer Pore Porenstruktur

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Neues Verbundprojekt erforscht die neurodegenerative Erkrankung Morbus Alzheimer
12.09.2017 | Universitätsklinikum Würzburg

nachricht Damit sich Mensch und Maschine besser verstehen
04.09.2017 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie