Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bauplan für das künstliche Gehirn

20.02.2013
Seit Jahrzehnten träumen Wissenschaftler davon, Computer zu bauen, die arbeiten wie ein Gehirn. Denn ein Gehirn ist weitaus energiesparender als ein Computer, es ist von sich aus lernfähig und bedarf keiner Programmierung.

Privatdozent Dr. Andy Thomas von der Fakultät für Physik der Universität Bielefeld experimentiert mit Memristoren – elektronische Mikrobauteile, die natürliche Nerven imitieren. Den Beweis dafür lieferten Thomas und seine Kollegen vor einem Jahr: Sie bauten einen lernfähigen Memristor. Jetzt nutzt Andy Thomas seine Memristoren als Schlüsselteile für den Bauplan eines künstlichen Gehirns.

Seine Ergebnisse stellt er Anfang März in der Printausgabe der renommierten Fachzeitschrift „Journal of Physics“ vor, das vom Institute of Physics in London veröffentlicht wird.

Memristoren bestehen aus feinen Nanoschichten und können genutzt werden, um Stromleitungen zu verbinden. Der Memristor gilt seit einigen Jahren als der elektronische Zwilling der Synapse. Synapsen sind gewissermaßen die Brücken, über die Nervenzellen (Neuronen) miteinander in Kontakt treten. Ihre Verbindung wird stärker, je öfter sie beansprucht wird. Eine Nervenzelle ist über tausende Synapsen gewöhnlich mit weiteren Nervenzellen verbunden.

Memristoren lernen wie Synapsen durch frühere Impulse. In ihrem Fall sind es Stromimpulse, die (bislang) nicht von Nervenzellen kommen, sondern von den angeschlossenen Stromleitungen. Wie viel Strom Memristoren durchlassen, das hängt davon ab, wie stark der Strom war, der in der Vergangenheit durch sie geflossen ist und wie lange dieser Strom auf sie eingewirkt hat.

Andy Thomas erklärt, dass Memristoren sich wegen ihrer Ähnlichkeit zu Synapsen besonders eignen, um mit ihnen ein künstliches Gehirn – eine neue Generation von Computern – zu bauen. „Sie erlauben den Bau von äußerst stromsparenden und robusten Prozessoren, die von sich aus lernfähig sind“. Auf Basis eigener Experimente und der Forschungsergebnisse aus Biologie und Physik hat er in seinem Artikel erstmals zusammengestellt, welche Gesetzmäßigkeiten aus der Natur auf technische Systeme übertragen werden müssen, damit ein solcher neuromorpher (nervenähnlicher) Computer funktioniert. Zu diesen Gesetzmäßigkeiten gehört, dass Memristoren sich wie Synapsen frühere Impulse „merken“ und dass Neuronen erst dann auf einen Impuls reagieren, wenn er einen bestimmten Schwellenwert überschreitet.

Dank dieser Eigenschaften lasse sich mit Synapsen der Prozess des Gehirns nachbauen, der für das Lernen zuständig ist, sagt Andy Thomas. Als Beispiel nennt er das klassische psychologische Experiment zum Pawlowschen Hund. Es zeigt, dass man die natürliche Reaktion auf einen triebhaften Reiz mit einem zunächst neutralen Reiz verbinden kann – so entsteht Lernen. Sieht ein Hund Futter, reagiert er mit Speichelfluss. Hört der Hund jedes Mal, wenn er das Futter sieht, einen Glockenton, verbinden sich der triebhafte und der neutrale Reiz. In der Folge fließt der Speichel auch dann, wenn der Hund nur den Glockenton hört und kein Futter in Sicht ist. Der Grund: Im Gehirn ist die Nervenzelle, die den triebhaften Reiz transportiert, über eine Synapse stark verbunden mit der Nervenzelle, die die Reaktion auslöst.

Wenn jetzt zeitgleich zum Futterreiz der neutrale Glockenreiz hinzukommt, lernt der Hund. Der Prüfmechanismus im Gehirn geht nun davon aus, dass die Nervenzelle mit dem neutralen Reiz (Glockenton) mitverantwortlich ist für die Reaktion – die Verbindung zwischen der eigentlich „neutralen“ Nervenzelle und der „Speichelfluss“-Nervenzelle wird ebenfalls stärker. Diese Verbindung lässt sich trainieren: Indem man wiederholt den triebhaften mit dem neutralen Reiz zusammenbringt. „Ein solcher Schaltkreis lässt sich ebenfalls mit Memristoren bauen – das ist ein erster Schritt zum neuromorphen Prozessor“, sagt Andy Thomas.

„Dies alles ist möglich, weil ein Memristor einzelne Informationen präziser speichern kann als ein Bit, auf dem bisher Computerprozessoren basieren“, so Thomas. Sowohl Memristor als auch ein Bit arbeiten mit elektrischen Impulsen. Doch das Bit lässt dabei keine feine Abstufung zu – es beherrscht nur „an“ oder „aus“. Der Widerstand des Memristors kann hingegen kontinuierlich steigen oder sinken. „Dadurch liefern Memristoren eine Grundlage zum allmählichen Lernen und Vergessen eines künstlichen Gehirns“, erklärt Thomas.

Originalveröffentlichung:
Andy Thomas, „Memristor-based neural networks”, Journal of Physics D: Applied Physics, http://dx.doi.org/10.1088/0022-3727/46/9/093001, online erschienen am 5. Februar 2013, erscheint gedruckt am 6. März 2013.
Kontakt:
Dr. Andy Thomas, Universität Bielefeld
Fakultät für Physik
Telefon: 0521 106-2540
E-Mail: andy.thomas@uni-bielefeld.de

Jörg Heeren | idw
Weitere Informationen:
http://www.spinelectronics.de/
http://www.uni-bielefeld.de

Weitere Berichte zu: Bauplan Gesetzmäßigkeiten Glockenton Nervenzelle Neuron Physik Prozessor Stromleitung Synapse

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Bergamoten – Verlockung und Verhängnis für Tabakschwärmer
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Resistiver Schaltmechanismus aufgeklärt
19.04.2017 | Forschungszentrum Jülich GmbH

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen