Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Batterie und Datenspeicher zugleich

24.04.2013
Zukünftige nanoelektronische Informationsspeicher sind gleichzeitig winzige Batterien – verblüffende Erkenntnis eröffnet neue Möglichkeiten

Resistive Speicherzellen (ReRAM) gelten als vielversprechende Lösung für künftige Generationen von Computerspeichern. Durch ihren Einsatz wird sich der Energieverbrauch moderner IT-Systeme drastisch verringern und die Leistungsfähigkeit gleichzeitig deutlich steigern lassen.


Aufbau einer resistiven Speicherzelle (ReRAM): Zwischen den beiden Elektroden baut sich eine elektrische Spannung auf, sodass die Speicherzellen als winzige Batterien betrachtet werden müssen. Sogenannte Filamente, die sich durch Ablagerungen im Betrieb bilden, können die Batterieeigenschaften verändern.
Quelle: Jülich-Aachen Research Alliance (JARA)

Entgegen der gängigen Theorie sind diese neuartigen Speicherzellen keine rein passiven Bauelemente, sondern müssen als winzige kleine Batterien betrachtet werden. Dies haben Forscher der Jülich-Aachen Research Alliance (JARA) in der renommierten Fachzeitschrift Nature Communications nachgewiesen.

Die entdeckte Eigenschaft birgt neue Möglichkeiten für weitere Anwendungen. Die Forschungsgruppe hat bereits eine Idee zum Patent angemeldet, wie sich mithilfe der Batteriespannung das Auslesen der Daten verbessern lässt.

Herkömmliche Datenspeicher arbeiten auf der Basis von Elektronen, die verschoben und gespeichert werden. Doch Elektronen sind – selbst für atomare Verhältnisse – extrem klein. Sie lassen sich nur mit großem Aufwand, mit relativ dicken Isolatorwänden etwa, "bändigen", sodass die Informationen nicht verloren gehen. Dies beschränkt nicht nur Speicherdichte und Geschwindigkeit, sondern kostet auch viel Energie. Aus diesem Grund wird weltweit fieberhaft an nanoelektronischen Bauelementen geforscht, die Ionen, also geladene Atome, zur Datenspeicherung nutzen. Diese sind einige Tausend Mal schwerer als Elektronen und viel besser "festzuhalten". Dadurch lassen sich die einzelnen Speicherelemente beinahe zu atomaren Dimensionen verkleinern, was die Speicherdichte enorm verbessert.

In sogenannten resistiven Speicherzellen (ReRAM) verhalten sich die Ionen auf Nanometerskala ähnlich wie in einer Batterie. Die Zellen enthalten zwei Elektroden, beispielsweise aus Silber und Platin, an denen sich die Ionen lösen und wieder niederschlagen. Dadurch verändert sich der elektrische Widerstand, was sich für die Speicherung von Daten ausnutzen lässt. Die Reduktions- und Oxidationsprozesse zeigen darüber hinaus aber noch eine andere Wirkung: Sie erzeugen eine elektrische Spannung. ReRAM–Zellen sind demnach keine rein passiven Systeme, sondern aktive elektrochemische Bauelemente. Sie müssen folglich als winzig kleine Batterien betrachtet werden, deren Eigenschaften entscheidend sind für die korrekte Modellierung und Entwicklung zukünftiger Datenspeicher.

Die Wissenschaftler vom Forschungszentrum Jülich und der RWTH Aachen haben in aufwendigen Versuchen die Batteriespannung von typischen Vertretern der ReRAM-Zellen bestimmt und mit theoretisch zu erwartenden Werten verglichen. So konnten weitere Eigenschaften (z. B. der ionische Widerstand) bestimmt werden, die vorher weder bekannt noch zugänglich waren. "Im Nachhinein ist das Vorhandensein einer Batteriespannung in ReRAM selbstverständlich. Aber während des neunmonatigen Begutachtungsprozesses des jetzt veröffentlichten Papers war sehr viel Überzeugungsarbeit zu leisten, da die Batterie-Spannung in ReRAM-Zellen drei verschiedene prinzipielle Ursachen haben kann und die Zuordnung der korrekten Ursache alles andere als trivial ist", berichtet Dr. Ilia Valov, Elektrochemiker in der Forschergruppe um Prof. Rainer Waser.

Die neue Erkenntnis ist insbesondere auch für die theoretische Beschreibung der Speicherbauelemente von zentraler Bedeutung. Bisher wurden ReRAM-Zellen mithilfe der Theorie der sogenannten "Memristoren" – zusammengesetzt aus "Memory", Speicher, und "Resistor", Widerstand – beschrieben. Das aus den 1970er Jahren stammende, theoretische Konzept wurde 2008 vom IT-Unternehmen HP erstmals auf ReRAM-Zellen angewandt. Es zielt auf die dauerhafte Speicherung von Information durch die Veränderung des elektrischen Widerstands ab. Aus der Memristor-Theorie ergibt sich allerdings eine wichtige Einschränkung. Sie ist auf passive Bauelemente beschränkt. "Die nachgewiesene, interne Batterie-Spannung der ReRAM-Elemente verletzt eindeutig das mathematische Gedankengebäude der Memristor-Theorie. Die Theorie muss zur Beschreibung der ReRAM-Elemente aufgegeben werden - oder man muss sie zu einer ganz neuen Theorie erweitern", sagt Dr. Eike Linn, Spezialist für Schaltungskonzepte in der Autorengruppe. Damit wird auch die Entwicklung jedes mikro- und nanoelektronischen Chips auf völlig neue Grundlagen gestellt.

"Die neuen Ergebnisse werden dazu beitragen, einige zentrale Rätsel in der internationalen ReRAM-Forschung zu klären", ist Prof. Rainer Waser, stellvertretender Sprecher des 2011 neu eingerichteten Sonderforschungsbereichs SFB 917 "Nanoswitches" der RWTH Aachen, überzeugt. In den letzten Jahren wurden beispielsweise unerklärliche Langzeitdrift-Phänomene beobachtet oder systematische Parameterstreuungen, die der Fertigung zugeschrieben wurden.

"Im Licht der neuen Erkenntnis wird es möglich, nun zielgerichtet das Design der ReRAM-Zellen zu optimieren und eventuell sogar Wege zu finden, die Batteriespannung der Zellen für völlig neue Anwendungen zu nutzen, die bisher jenseits aller technischen Möglichkeiten lagen", so der Leiter des Instituts für Werkstoffe der Elektrotechnik II (IWE II) an der RWTH Aachen sowie des Bereichs Elektronische Materialien am Peter Grünberg Institut (PGI-7) des Forschungszentrums Jülich. Seit Jahren arbeitet er mit Firmen wie Intel und Samsung Electronics auf dem Gebiet der ReRAM-Elemente zusammen.

Originalpublikation:
I. Valov,E. Linn, S. Tappertzhofen, S. Schmelzer, J. van den Hurk, F. Lentz & R. Waser
Nanobatteries in redox-based resistive switches require extension of memristor theory
Nature Communications. 23. April 2013
DOI: 10.1038/ncomms2784
Abstract: http://www.nature.com/ncomms/journal/v4/n4/full/ncomms2784.html

Weitere Informationen:
Jülich-Aachen Research Alliance for Fundamentals of Future Information Technologies (JARA-FIT): http://www.jara.org/de/research/jara-fit/
Electronic Materials Research Lab (EMRL): http://www.emrl.de/h_.html
SFB 917 Nanoswitches: http://www.sfb917.rwth-aachen.de/

Ansprechpartner:
Prof. Rainer Waser, Leiter des Peter Grünberg Instituts (PGI-7), Bereich Elektronische Materialien, des Forschungszentrums Jülich & Leiter des Instituts für Werkstoffe der Elektrotechnik II (IWE II) der RWTH Aachen
Tel. 0241 8027812
waser@iwe.rwth-aachen.de

Pressekontakt:
Christian Schipke
Tel. 02461 61-3835
c.schipke@fz-juelich.de

Tobias Schlößer
Tel. 02461 61-4771
t.schloesser@fz-juelich.de

Tobias Schlößer | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Neue Formeln zur Erforschung der Altersstruktur nicht-linearer dynamischer Systeme
23.01.2018 | Max-Planck-Institut für Biogeochemie

nachricht Multidisziplinäre Studie regt neue Strategie zur Medikamentenentwicklung an
15.01.2018 | Heidelberger Institut für Theoretische Studien gGmbH

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics