Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterien-Protein produziert Nano-Magnete

08.05.2012
Forscherin sieht nahezu unerschöpfliches Anwendungspotenzial

Wissenschaftlern der University of Leeds ist es gelungen, ein Bakterien-Protein zur Herstellung von Nano-Magneten einzusetzen. Dies könnte in Zukunft die Herstellung noch kleinerer Elektronikgeräte und anderer Bestandteile ermöglichen. Unmittelbar in Aussicht ist die Verwendung des Verfahrens zur Produktion schnellerer und größerer Festplatten. Sarah Staniland, die leitende Forscherin des Projekts, sieht gegenüber pressetext ein breites Spektrum möglicher Anwendungen.


Nano-Magnete: Forscher setzen auf Magnetospirillum (Foto: leeds.ac.uk)

Metallfresser macht Eisen zu Magnetit

"Elektronik muss immer kleiner und leistungsfähiger werden", erklärt die Expertin vom Institut für Physik und Astronomie. "Die Natur ist großartig, wenn es um den Nano-Bereich geht. Dort finden wir winzige, kraftvolle Maschinen, wie jene in unserem eigenen Körper, die wir als Vorbild verwenden können."

Ein Zugang, den man auch für die Arbeit mit dem Bakterium "Magnetospirillum magneticum" gewählt hat. Dieses wohnt vornehmlich in Seen und Teichen und ernährt sich von Eisen, das es in seinem Körper zu kleinen Magnetit-Fragmenten verarbeitet. Dabei richten sie sich wie ein Kompass nach dem Erdmagnetfeld aus. Magnetit ist das am stärksten magnetische, kristalline Material auf der Erde.

Magnete wachsen auf Gold-Inseln

Die Wissenschaftler haben das für diesen Prozess zuständige Protein extrahiert und auf eine schachbrettförmige Oberfläche auf Gold aufgetragen. Diese wird schließlich in eine eisenhaltige Lösung gelegt. Bei einer Erwärmung auf 80 Grad entstehen auf den vergoldeten Flächen winzige, würfelförmige Magnetit-Gebilde.

Im nächsten Schritt plant das Team von Staniland, die Schachbrettanordnung soweit zu verkleinern, dass letztlich damit einzelne Nano-Magnete produziert werden können. Diese könnten sich in fernerer Zukunft auf die Oberfläche konventioneller Festplatten auftragen lassen und die Speicherdichte dramatisch erhöhen.

Forschung steht noch am Anfang

"Der Prozess ist derzeit aber noch nicht energie- oder kosteneffizient, denn wir befinden uns noch in einer sehr frühen Phase der Forschung", gibt die Physikerin im pressetext-Interview zu Protokoll. Nach einer ersten, groben Schätzung könnte die Arbeit an der Universität in Leeds vielleicht in zehn bis 20 Jahren Eingang in die Massenfertigung finden.

Das Potenzial ist laut Staniland enorm. "Dieses Verfahren könnte auch im Bau winziger, medizinischer Geräte behilflich werden, aber auch im Rahmen der Herstellung ganz anderer Elektronik. Unsere Möglichkeiten hängen alleine davon ab, wie wie gut wir die Natur nutzen und solche Proteine manipulieren können", meint die Forscherin abschließend.

Georg Pichler | pressetext.redaktion
Weitere Informationen:
http://www.leeds.ac.uk

Weitere Berichte zu: Bakterien-Protein Eisen Elektronik Festplatte Magnetit Nano-Magnete Protein Prozess

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Speiseröhrenkrebs einfacher erkennen
06.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Neues Labor für die Aufbautechnik von ultradünnen Mikrosystemen
21.02.2017 | Hahn-Schickard

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten