Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auch fürs Smartphone: Kaiserslauterer Physiker entwickeln elektrische Irisblende für Minikameras

09.01.2018

Fotografen nutzen Irisblenden, um die einfallende Lichtmenge zu kontrollieren und die Schärfentiefe einzustellen. Auf Grund ihrer Größe und des Energieverbrauchs sind den herkömmlichen Blenden jedoch Grenzen gesetzt: Sie können nicht in Minikameras wie bei Smartphones oder Tablets zum Einsatz kommen. Anders sieht es mit den mikrotechnisch hergestellten Blenden aus, an denen Physiker der Technischen Universität Kaiserslautern (TUK) und Chemiker der Universität Osnabrück derzeit arbeiten. Sie entwickeln eine elektrisch steuerbare Irisblende, die sich auch für Minikameras eignet. Das Projekt wird von der Deutschen Forschungsgemeinschaft gefördert.

Wenn Sonnenlicht das Auge trifft, wird die Pupille kleiner. Dafür sorgt die Iris. Sie wirkt als Blende und reguliert, wie viel Licht ins Auge gelangt. Auf demselben Prinzip basieren auch Blenden in Objektiven von Fotoapparaten. Sie steuern die Lichtmenge, die durch das Objektiv gelangt. Aber auch die Schärfentiefe eines Bildes lässt sich durch sie steuern.


Die Physiker um Professor Oesterschulze bauen die Mikroiris an einer speziellen Werkbank unter Luftausschluss zusammen. Im Bild zu sehen ist Doktorand Carsten Kortz.

Foto: Thomas Koziel

Eine herkömmliche Blende besteht aus mehreren beweglichen Lamellen, die nach innen und außen geschwenkt werden können. Zusammen bilden sie eine Blendenöffnung, deren Größe eingestellt werden kann. „Dieser Mechanismus benötigt viel Platz, weshalb er nicht in kleineren Kamerasystemen zum Einsatz kommt“, sagt Professor Dr. Egbert Oesterschulze, der an der TUK den Lehrstuhl für Physik und Technologie der Nanostrukturen innehat.

Das Team um Professor Oesterschulze arbeitet an einer Technik, mit deren Hilfe Blenden auch in mikrooptischen Systemen Verwendung finden. „Wir nutzen dabei sogenannte elektrochrome Materialien“, sagt der Physiker.

„Sie ändern ihre optischen Absorptionseigenschaften beim Anlegen einer elektrischen Spannung. So können wir einzelne ringförmige Bereiche, die den gewünschten Blendenstufen der herkömmlichen Iris entsprechen, gezielt abdunkeln und somit die Lichtmenge und ebenso die Schärfentiefe auf Knopfdruck kontrollieren.“

Die Methode der Kaiserslauterer Wissenschaftler funktioniert wie folgt: „Die verwendeten elektrochromen Moleküle werden an der Oberfläche einer hochporösen Nanopartikelschicht chemisch gebunden“, erklärt der Professor. Wird an diese leitfähige Schicht von außen eine Spannung angelegt, so können diese Moleküle das einfallende Licht absorbieren oder lassen es passieren, je nachdem welche Spannung anliegt.

„Die Dicke dieser Iris-Schicht ist mit rund 50 Mikrometer dünner als der Durchmesser eines menschlichen Haares. Sie benötigt nur sehr wenig Platz zwischen zwei dünnen Glasplatten“, sagt Oesterschulze. „Dieser geringe Platzbedarf kombiniert mit dem geringen elektrischen Energieverbrauch ermöglicht es, die elektrochrome Iris in Mikroobjektiven zu nutzen.“ Dies wäre zum Beispiel für Smartphones interessant, aber auch für andere mikrooptische Kamerasysteme.

Die Arbeiten werden von der Deutschen Forschungsgemeinschaft mit insgesamt 430. 000 Euro gefördert. Beteiligt dabei ist unter anderem Professor Dr. Lorenz Walder vom Institut für Chemie neuer Materialien der Universität Osnabrück.

Fragen beantwortet:
Prof. Dr. Egbert Oesterschulze
Physik und Technologie der Nanostrukturen
Tel.: 0631 205-2680
E-Mail: oester[at]physik.uni-kl.de

Melanie Löw | Technische Universität Kaiserslautern
Weitere Informationen:
http://www.uni-kl.de

Weitere Berichte zu: Blende Lamellen Minikameras Moleküle Nanostrukturen Objektiv Pupille Smartphone

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Forschende der Uni Kiel entwickeln extrem empfindliches Sensorsystem für Magnetfelder
15.02.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Getarntes Virus für die Gentherapie von Krebs
31.01.2018 | Universität Zürich

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kameratechnologie in Fahrzeugen: Bilddaten latenzarm komprimiert

21.02.2018 | Messenachrichten

Mit grüner Chemie gegen Malaria

21.02.2018 | Biowissenschaften Chemie

Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro

21.02.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics