Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 


Infrared digital holography allows firefighters to see through flames, image moving people

Other applications could include monitoring breathing, cardiac beat detection and analysis, body deformation measurements during exercise

Firefighters put their lives on the line in some of the most dangerous conditions on Earth. One of their greatest challenges, however, is seeing through thick veils of smoke and walls of flame to find people in need of rescue.

A team of Italian researchers has developed a new imaging technique that uses infrared (IR) digital holography to peer through chaotic conflagrations and capture potentially lifesaving and otherwise hidden details. The team describes its breakthrough results and their applications in a paper published today in the Optical Society's (OSA) open-access journal Optics Express.

Firefighters can see through smoke using current IR camera technology. However, such instruments are blinded by the intense infrared radiation emitted by flames, which overwhelm the sensitive detectors and limit their use in the field. By employing a specialized lens-free technique, the researchers have created a system that is able to cope with the flood of radiation from an environment filled with flames as well as smoke.

"IR cameras cannot 'see' objects or humans behind flames because of the need for a zoom lens that concentrates the rays on the sensor to form the image," says Pietro Ferraro of the Consiglio Nazionale delle Ricerche (CNR) Istituto Nazionale di Ottica in Italy. By eliminating the need for the zoom lens, the new technique avoids this drawback.

"It became clear to us that we had in our hands a technology that could be exploited by emergency responders and firefighters at a fire scene to see through smoke without being blinded by flames, a limitation of existing technology," Ferraro says. "Perhaps most importantly, we demonstrated for the first time that a holographic recording of a live person can be achieved even while the body is moving."

Holography is a means of producing a 3-D image of an object. To create a hologram, such as those typically seen on credit cards, a laser beam is split into two (an object beam and a reference beam). The object beam is shone onto the object being imaged. When the reflected object beam and the reference beam are recombined, they create an interference pattern that encodes the 3-D image.

In the researchers' new imaging system, a beam of infrared laser light is widely dispersed throughout a room. Unlike visible light, which cannot penetrate thick smoke and flames, the IR rays pass through largely unhindered. The IR light does, however, reflect off of any objects or people in the room, and the information carried by this reflected light is recorded by a holographic imager. It is then decoded to reveal the objects beyond the smoke and flames. The result is a live, 3-D movie of the room and its contents.

The next step in moving this technology to the field is to develop a portable tripod-based system that houses both the laser source and the IR camera. The systems may also be suitable for fixed installation inside buildings or tunnels. In addition, the team is exploring other applications, most notably in the biomedical field for non-destructive testing of large aerospace composite structures.

"Besides life-saving applications in fire and rescue, the potential to record dynamic scenes of a human body could have a variety of other biomedical uses including studying or monitoring breathing, cardiac beat detection and analysis, or measurement of body deformation due to various stresses during exercise," Ferraro says. "We are excited to further develop this technology and realize its application for saving and improving human life."

Paper: "Imaging live humans through smoke and flames using far-infrared digital holography," M. Locatelli et al., Optics Express, Vol. 21, Issue 5, pp. 5379-5390 (2013) (link:

EDITOR'S NOTE: Images and a movie of the new technique are available to members of the media upon request. Contact Angela Stark.

About Optics Express

Optics Express reports on new developments in all fields of optical science and technology every two weeks. The journal provides rapid publication of original, peer-reviewed papers. It is published by the Optical Society and edited by Andrew M. Weiner of Purdue University. Optics Express is an open-access journal and is available at no cost to readers online at

About OSA

Uniting more than 180,000 professionals from 175 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit

Angela Stark | EurekAlert!
Further information:

Further reports about: 3-D image Ferraro Optic Venus Express credit card infrared light optical data

More articles from Innovative Products:

nachricht New Video Camera Released Featuring Ultra-High-Speed CMOS Image Sensor Developed At Tohoku University
11.08.2015 | Tohoku University

nachricht Safe motorcycle helmets – made of carrot fibers?
06.08.2015 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Follow Me: Forscher der Jacobs University steuern Unterwasser-Roboter erstmals durch Zeichensprache

Normalerweise werden Unterwasser-Roboter über lange Kabel von Booten oder von Land aus gesteuert. Forschern der Jacobs University in Bremen ist nun ein Durchbruch in der Mensch-Maschine-Kommunikation gelungen: Erstmals konnten sie einen Unterwasser-Roboter mit Hilfe von Gesten navigieren. Eine spezielle Kamera half dabei, die Zeichensprache in Befehle umzusetzen. Die Feldtests fanden im Rahmen des EU-geförderten Projektes CADDY „Cognitive Autonomous Diving buddy“ statt.

Archäologische Untersuchungen im Ozean und vergleichbare komplexe Forschungsprojekte unter Wasser sind auf die Unterstützung von Robotern angewiesen, um in...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser-Prozesssimulation erstmals auch als App verfügbar

Die Simulation von Prozessen bei der Lasermaterialbearbeitung ist in den letzten Jahren immer besser geworden. Die Software kann heute relativ gut voraussagen, was am Werkstück passiert. Leider ist sie hochkomplex und erfordert viel Rechenzeit. Durch eine clevere Vereinfachung können Experten vom Fraunhofer-Institut für Lasertechnik ILT erstmals eine Simulationssoftware anbieten, die Prozesse in Echtzeit rechnet und auch auf Tablets oder Smartphones läuft. Mit der schnellen Software lassen sich teure Versuche einsparen und noch besser optimale Prozessparameter finden.

Eine verlässliche Simulation von Laserprozessen war bislang eine Sache für Experten. Mit ausgefeilten Software-Paketen und viel Zeit auf Computerclustern...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantensimulation: Magnetismus besser verstehen

Heidelberger Physiker imitieren mit ultrakalten Atomen das Verhalten von Elektronen in einem Festkörper

Einen neuen Ansatz zur Erforschung des Phänomens Magnetismus haben Wissenschaftler der Universität Heidelberg entwickelt. Mithilfe von ultrakalten Atomen nahe...

Alle Focus-News des Innovations-reports >>>



im innovations-report
in Kooperation mit academics

Schlafmedizin-Jahrestagung: Beginnt die Schule zu früh? Steht Deutschland zu früh auf?

24.11.2015 | Veranstaltungen

Verantwortung der Internet-Giganten – Brauchen wir eine Politik und Ethik der Algorithmen?

24.11.2015 | Veranstaltungen

Computerphysik: Experten treffen sich an Universität Leipzig

23.11.2015 | Veranstaltungen

Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einsichten in die Funktionsweise von Antidepressiva

25.11.2015 | Biowissenschaften Chemie

Online-Landkarte der Plattform Industrie 4.0

25.11.2015 | Energie und Elektrotechnik

Pflanzenverteidigung als Biotech-Werkzeug

25.11.2015 | Biowissenschaften Chemie