Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues offenes MR-System feiert weltweit Premiere: Magnetom C! von Siemens - Klein aber oho!

06.08.2004

Siemens Medical Solutions hat sein Produktportfolio mit dem Magnetom C! um einen neuen offenen 0,35 Tesla Magnetresonanztomographen (MRT) erweitert. Das Magnetom C! ist der zurzeit kleinste C-förmige Permanentmagnet, der die klinischen Routineanforderungen in Neurologie, Orthopädie und Angiographie, sowie der Pädiatrie, Onkologie und in der Kardiologie erfüllt. Optimierte Komponenten integrieren innovative Hochfeld-Technologie und erleichtern Arbeitsabläufe in Krankenhaus und Praxis. Exzellente Bildqualität und eine hohe Diagnosesicherheit gibt es mit dem Magnetom C! in einem kostengünstigen Paket.

Mit nur 137 Zentimetern Durchmesser gehört der Magnet des Magnetom C! zu den kompaktesten Systemen seiner Klasse. Die Vorteile des Systems sind die Hochfeldtechnologie und exzellente Bildqualität. Darüber hinaus ist es nach drei Seiten offen; durch den seitlichen „Einstieg“ in das Gerät hat der Patient freie Sicht in alle Richtungen. Bei vielen Untersuchungen ist das Sichtfeld des Patienten nicht eingeschränkt, Ausnahme sind Kopf- und Nackenuntersuchungen. Die zweidimensional bewegliche Liege gewährleistet, dass die zu untersuchende Region immer in der Mitte des Magneten ist und somit optimale Bildqualität erzielt wird. Das C-förmige Design vereinfacht die Untersuchung für Patienten und Klinikpersonal erheblich. Auch bei schwergewichtigen Patienten ist ein guter Zugang und eine leichte Untersuchung möglich.

Im Mid-Field-System Magnetom C! wurden innovative Komponenten (2D Pace, PAT, Inline-Technologie, Syngo, Phönix) integriert, die es zu einem System mit Hochfeld- Technologie (HF) wandeln. Das System ist aufgrund der standardisierten Siemens- Software Syngo einfach zu bedienen. Mit der integrierten Phoenix-Funktion können Protokolldaten ausgetauscht werden. Phoenix extrahiert Sequenzprotokolle aus klinischen Bildern, die mit Magnetom-Systemen akquiriert wurden. Dies erhöht zum Beispiel die Reproduzierbarkeit bei Nachuntersuchungen. Bereits in der Standardkonfiguration des Magnetom C! sind optimierte Protokolle für alle Routineanwendungen von Kopf bis Fuß enthalten. Hochfeld-Techniken wie etwa 2D PACE ermöglichen die abdominelle Bildgebung ohne Atemanhalten des Patienten; die integrierte Parallele Akquisitionstechnik (iPAT) verkürzt die Messzeit bei vielen Untersuchungen.

Auch für Spulen und Hochfrequenzkanäle wird beim Magnetom C! Hochfeld- Technologie eingesetzt. Schnellere Untersuchungen werden durch bis zu vier Kanäle ermöglicht. So kann der Patient mit bis zu vier Spulen für die Untersuchung vorbereitet werden, womit eine optimale anatomische Abdeckung erreicht wird. Dadurch entfallen Spulenumlagerungszeiten, die Untersuchungszeiten verkürzen sich, und mehr Patienten können in der gleichen Zeit untersucht werden. „Auf diese Weise kann der Workflow in Krankenhaus oder Praxis effizienter gestaltet werden“, sagte Dr. Heinrich Kolem, Leiter des Geschäftsbereichs Magnetresonanztomographie bei Siemens Medical Solutions. „Gleichzeitig sind die laufenden Kosten für das Magnetom C! niedrig, da es sich um einen Permanentmagneten handelt.“

Funktionsweise der Magnetresonanztomographie

Der menschliche Körper besteht zu zwei Dritteln aus Wasser. Das Wasser-Molekül besteht aus zwei Wasserstoffatomen und einem Sauerstoffatom. Der Kern des Wasserstoffatoms, das Proton, kann mit einem magnetischen Kreisel verglichen einem starken Magnetfeld – in der Praxis 30.000 Mal stärker als das Magnetfeld der Erde – richten sich die ansonsten willkürlich drehenden Protonen parallel oder antiparallel zur Magnetfeldrichtung aus. Je nach Stärke des Magnetfeldes entsteht dann ein mehr oder weniger starker Überschuss an in einer Richtung ausgerichteter Protonen. Daraus entsteht ein messbares magnetisches Moment.

Durch Zufuhr elektromagnetischer Hochfrequenzenergie kann man die Ausrichtung dieses Überschusses verändern: Das magnetische Moment beginnt um die Feldlinien des Magnetfeldes zu kreiseln. Wird die elektromagnetische Stimulation beendet, geben die angeregten Protonen die erhaltene Energie wieder ab, indem sie ihrerseits magnetische Felder erzeugen, die von einer Spule empfangen werden. Die Signalstärke ist umso größer, je größer der Überschuss der in einer Richtung ausgerichteten Kerne ist, also umso größer, je stärker das Magnetfeld ist. Wenn man das Magnetfeld räumlich verändert, kann man die MR-Signale ihrem Entstehungsort zuordnen. Mit Hilfe von Computer-Rekonstruktionsprogrammen lassen sich medizinische Bilder ähnlich der Röntgen-Computertomographie erzeugen. Der Kontrast im Kernspin-Schnittbild hängt von der räumlichen Verteilung der Konzentration des in den Organen enthaltenen Wassers ab, ferner von den Relaxationszeiten, das heißt den Zeiten, bis sich nach der Abschaltung der Hochfrequenz-Energie der ursprüngliche Zustand wieder eingestellt hat.

Bianca Braun | Siemens AG
Weitere Informationen:
http://www.siemens.com

Weitere Nachrichten aus der Kategorie Innovative Produkte:

nachricht Schnell schweben: Studierende konstruieren Transportkapsel
04.04.2017 | Carl von Ossietzky-Universität Oldenburg

nachricht Weltweit erste fliegende Selfie-Kamera im Handyformat in Berlin vorgestellt
09.03.2017 | AirSelfie

Alle Nachrichten aus der Kategorie: Innovative Produkte >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie