Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zwei neue Hochleistungsrechner bringen Rheinland-Pfalz im wiss. Rechnen an die Forschungsspitze

04.06.2012
Superschnelle Rechnerkapazitäten unterstützen und stärken Spitzenforschung in Mainz und Kaiserslautern

Zwei neue leistungsfähige Großrechner an der Johannes Gutenberg-Universität Mainz und der Technischen Universität Kaiserslautern geben Rheinland-Pfalz im Bereich des bundesweiten Hochleistungsrechnens ein neues Profil.

Insgesamt fast €5,5 Mio. investieren die Landesregierung, die Deutsche Forschungsgemeinschaft (DFG) und die beiden Universitäten in die neuen Hochleistungsrechner und schieben damit Rheinland-Pfalz in diesem Bereich an die Forschungsspitze.

Darüber hinaus unterstützen und stärken die superschnellen Rechnerkapazitäten die Spitzenforschung in Mainz und Kaiserslautern – sei es in der Meteorologie, der Genomforschung, der Chemie, der Physik, im Maschinenbau oder bei der Erforschung neuer Materialien.

"Die Einbindung der beiden Großrechner in die 'Allianz für Hochleistungsrechnen Rheinland-Pfalz' setzt im Bereich High Performance Computing für den Hochschul- und Forschungsstandort Rheinland-Pfalz ganz neue Maßstäbe. Was mich dabei besonders freut: Wissenschaftlerinnen und Wissenschaftler im ganzen Land profitieren davon", so Wissenschaftsministerin Doris Ahnen.

"In der rechnergestützten Forschung steckt enormes Potenzial und wer dieses erkennt und nutzen will, findet nun optimale Bedingungen vor, um mit den wissenschaftlichen Entwicklungen auf diesem Gebiet Schritt halten zu können. Für Spitzenforschung auf internationalem Topniveau – und zwar quer durch alle wissenschaftlichen Disziplinen hinweg – sind damit die technischen Bedingungen gegeben."

Zudem, ergänzte Ahnen, habe das Land neben dem Aufbau der beiden Superrechner bereits großen Wert auf den Ausbau einer guten technischen Grundversorgung und Serverstruktur gelegt: So floss ein Großteil der Mittel aus dem Konjunkturprogramm II in den IT-Bereich. Von insgesamt ca. €86 Mio. waren rund €10,6 Mio. allein auf die IT-Ausstattung entfallen.

Die beiden Systeme stehen nicht nur den Forschern der Universitäten in Mainz und Kaiserslautern zur Verfügung, sondern sind in die Allianz für Hochleistungsrechnen Rheinland-Pfalz (AHRP) eingebunden. Die AHRP bündelt die Rechenkapazitäten des Landes, um diese für alle Hochschulen und Forschungseinrichtungen des Landes verfügbar zu machen und bietet Schulungen (Vorlesungen, Seminare, Praktika) und Beratung für Anwender des Hochleistungsrechnens an. Die Inbetriebnahme der beiden neuen Hochleistungsrechner und die Aufgaben der AHRP sind somit ein wesentlicher Beitrag zur Profilbildung aller Hochschulen in Rheinland-Pfalz und zu Stärkung der Wettbewerbsfähigkeit im internationalen Umfeld.

Für die Wissenschaftlerinnen und Wissenschaftler der Johannes Gutenberg-Universität Mainz bietet das neue Cluster die Möglichkeit, Hochleistungsrechnen auf dem aktuellen Stand der Technik zu nutzen. "Viele wissenschaftliche Disziplinen nutzen inzwischen Hochleistungsrechner zur Modellbildung für komplexe Systeme. So entwickeln sich numerische Simulationen neben den klassischen Bereichen Theorie und Experiment zu einem dritten Standbein naturwissenschaftlicher Forschung", erklärt der Präsident der Johannes Gutenberg-Universität Mainz, Univ.-Prof. Dr. Georg Krausch. "Da die Komplexität der Zusammenhänge, z. B. in der Meteorologie, Genomforschung oder bei der Wechselwirkung einzelner Moleküle, nicht immer mit einem Versuchsaufbau abgebildet werden kann, greift moderne naturwissenschaftliche Forschung – natürlich auch an unserer Universität – vermehrt auf Simulationstechniken zurück. Deren Weiterentwicklung steht im Mittelpunkt unseres Forschungsschwerpunkts Rechnergestützte Forschungsmethoden in der Naturwissenschaft. Daher freuen wir uns sehr über das High Performance Cluster, einerseits als Stärkung unseres Forschungsschwerpunkts, andererseits trägt der Hochleistungsrechner auch dazu bei, dass unsere naturwissenschaftlichen Arbeitsgruppen die führende Stellung auf ihren Forschungsgebieten halten und weiter ausbauen können."

"Hochleistungsrechnen ist an der TU Kaiserslautern schon lange ein wichtiger Baustein der Forschung in der Physik, der Chemie, der Biologie und im Maschinenbau", so der Präsident der TU Kaiserslautern, Univ.-Prof. Dr. Helmut J. Schmidt. "Auch Disziplinen wie die Sozialwissenschaften, die Wirtschaftswissenschaften oder die Informatik nutzen mehr und mehr das Hochleistungsrechnen für die Simulation komplexer und hoch-paralleler Systeme und zum besseren Verständnis der ihnen zugrunde liegenden Zusammenhänge. Mit dem neuen Hochleistungsrechner in Kaiserslautern haben die Forscher der TU Kaiserslautern nun das geeignete Werkzeug, um ihre Forschungsarbeiten weiter voranzutreiben. Der Einsatz solcher Systeme steht und fällt mit einer geeigneten Supportstruktur, die durch entsprechende Lehr- und Seminarangebote an der TU Kaiserslautern aufgebaut worden ist."

Die Nutzer des AHRP in Rheinland-Pfalz werden von der mit 120 GBit/s deutschlandweit schnellsten Verbindung zwischen zwei Universitäten profitieren. Hierdurch wird es möglich, dass von den Forschern der jeweils am besten geeignete der beiden Hochleistungsrechner ausgewählt wird und Simulationsdaten zeitnah ausgetauscht werden. Die Menge der anfallenden Datenmengen würde es unmöglich machen, diese Daten über das öffentliche Internet zu versenden, und erfordert daher eine solch enge Anbindung der datenverarbeitenden Rechenzentren.

Das High Performance Cluster im Zentrum für Datenverarbeitung (ZDV) der Johannes Gutenberg-Universität Mainz kann 287.000 Milliarden Rechenoperationen pro Sekunde durchführen. "Der Rechner ist in nur 14 Schränken aufgebaut, also sehr kompakt für seine Leistungsfähigkeit. Der Aufbau eines vergleichbaren Rechners aus Personal Computern würde mehr als 5.000 Computer umfassen und die zwanzigfache Stellfläche einnehmen", erklärt Univ.-Prof. Dr. André Brinkmann, Leiter des Zentrums für Datenverarbeitung der JGU. Die Fortschritte der Computer-Technologie, aber auch der Kühltechnik ermöglichen es, dass der neue Cluster mit einem Verbrauch von 480 kW bei Volllast zweimal energieeffizienter als der bisherige Cluster arbeitet. Der Name des Clusters ist "Mogon" – in Anlehnung an das römische Mogontiacum, dem lateinischen Namen der Stadt Mainz.

Anwender des High Performance Clusters sind vor allem Institute und Arbeitsgruppen aus der Physik; aber auch Forscher aus der Mathematik, Biologie, Medizin, und den Geowissenschaften nutzen zunehmend die Möglichkeiten des Hochleistungsrechnens. Computer-technisch sehr aufwändige Fragestellungen kommen an der JGU auch aus der Molekulargenetik. So braucht die Genomforschung für die möglichst komplette Entschlüsselung der Erbinformation von Lebewesen beim "Next-Generation Sequencing" von DNA-Molekülen enorme Mengen an Rechen- und Speicherleistung. Beispiele für Fragestellungen aus Biomedizin und Biologie, die hier untersucht werden, kommen aus der Krebs- und Evolutionsforschung.

Quasi jeder Tumor ist genetisch unterschiedlich. Es ist für eine patientenspezifische Krebstherapie wichtig zu verstehen, welche Gene einen Tumor spezifisch machen und ob diese Gene für die Therapie nutzbar sind. Das Verständnis für die Folgen des Klimawandels kann grundlegend verbessert werden, wenn die Reaktion von wichtigen Teilen der Nahrungskette, wie von im Wasser lebende Insektenlarven, auf Änderungen der Temperatur im Zuge der Klimaschwankungen verbessert wird. Die gleichzeitige Bestimmung der Aktivität aller Gene durch Massen-Sequenzierung gibt hier Auskunft. Die Molekulargenetik ist in der Lage, mit Hilfe von Illumina-Sequenziergeräten mehrere menschliche Genome mit mehreren Milliarden Basenpaare in zwei Wochen zu entschlüsseln. Dabei fallen für jedes Genom viele Terabyte an Speicherbedarf an. Jedes Genom, die Gesamtheit der Erbinformation, wird technisch bedingt zunächst in kurzen Sequenzschnipseln à 100 Bausteinen (Basenpaaren) sequenziert. Aus Milliarden dieser Schnipsel setzen die Wissenschaftler dann per Bioinformatik die durchgehende DNA-Sequenz von Chromosomen wieder zusammen. Diese Aufgabenstellung ist ausgesprochen hauptspeicherintensiv und benötigt mehr als 512 GB RAM pro Rechner.

Der Hochleistungsrechner der TU Kaiserslautern wird vom Regionalen Hochschulrechenzentrum Kaiserslautern (RHRK) in Betrieb genommen und betreut. "Für den neuen Cluster wurde ein separater Raum mit einer modernen Wasserkühlung und einer separaten Stromversorgung ausgestattet", erläutert Prof. Dr. Paul Müller, Leiter des RHRK. "Die erste Ausbaustufe des Clusters wird in sieben Schränken montiert, der Raum bietet noch genügend Platz für die zweite Ausbaustufe, die für 2013 geplant ist. Neben der Leistung des Clusters waren auch Energieeffizienz und Platzbedarf wesentliche Gesichtspunkte bei der Beschaffung." Als Hommage an ein südwestdeutsches Fabelwesen wird der Cluster den Namen "Elwetritsch" tragen.

Hochleistungsrechnen wird an der TU Kaiserslautern von Arbeitsgruppen und Instituten aus den Ingenieur- und den Naturwissenschaften genutzt. Im Maschinenbau werden Strömungssimulationen durchgeführt, Schüttguteigenschaften simuliert oder thermo-dynamische Berechnungen vorgenommen. In der Physik müssen tausende von Differentialgleichungen schnell gelöst werden, um beispielsweise das Verhalten von Ferromagneten zu simulieren, die kurzzeitigen Laserimpulsen ausgesetzt werden. Chemiker der TU Kaiserslautern befassen sich z.B. mit der Vermeidung von chemischen Abfallprodukten bei Syntheseprozessen oder führen Rechnungen durch, um die elektronische Struktur von Atomen und Molekülen besser verstehen zu können. In der Biologie ist Hochleistungsrechnen wichtig für die Gensequenzanalysen oder die Phylogenetik, die sich mit der Entwicklung und Verwandtschaft von Lebewesen beschäftigt. Um diesen diversen Anforderungen gerecht zu werden, besteht der Hochleistungsrechner in Kaiserslautern aus unterschiedlich ausgestatteten Hardware-Komponenten, die für die jeweiligen Anwendungsgebiete eine möglichst optimale Umgebung bieten.

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de/presse/52192.php

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Mehrkernprozessoren für Mobilität und Industrie 4.0
07.12.2016 | Karlsruher Institut für Technologie

nachricht Wenn das Handy heimlich zuhört: Abwehr ungewollten Audiotrackings durch akustische Cookies
07.12.2016 | Fachhochschule St. Pölten

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops

Wie weggeblasen!

08.12.2016 | Seminare Workshops

Seminare 2017 HDT Berlin

08.12.2016 | Seminare Workshops