Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Zukunft ist optisch - einzigartige Laser-Kommunikationsmodule könnten die heutige Technik ersetzen

26.09.2011
Satelliten kommunizieren derzeit mit Hilfe von Mikrowellentechnik. Diese Technologie könnte jedoch bald an ihre Grenzen stoßen, sagt Stefan Spießberger vom Ferdinand-Braun-Institut. Er hat ein Kommunikationsmodul entwickelt, das mit Halbleiterlasern arbeitet und die heutige Technik ersetzen kann.

Mikrowellen als Informationsträger im Weltraum haben mehrere Nachteile. Wegen ihrer großen Wellenlänge können die Kommunikationsmodule nicht endlos verkleinert werden und haben Grenzen in der Übertragungsrate. Für diese Probleme könnten optische Kommunikationsmodule mit Laserlicht die Lösung sein.

„Sie arbeiten mit Wellenlängen um 1000 Nanometer, können dadurch deutlich kleiner gebaut werden und lassen wesentlich höhere Datenübertragungsraten zu“, erklärt Stefan Spießberger vom Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH). Die Strahlen eines Lasers lassen sich darüber hinaus so eng bündeln, dass Reflektionen und Störungen kein Problem mehr darstellen. Die optische Kommunikationstechnik im Weltraum steckt jedoch noch in den Kinderschuhen, erst wenige Initiativen gab es weltweit für den Bau solcher Module. Das nun am FBH entwickelte und getestete Bauelement bringt die Technologie einen großen Schritt voran und ist weltweit einzigartig.

Das Funktionsprinzip ist einfach: Ein Sender erzeugt einen Laserstrahl von genau definierter Wellenlänge und schickt ihn zielgerichtet in den Weltraum.

Der Empfänger mischt diesen Strahl mit einem zweiten Strahl, dem lokalen Oszillator. Verändert man den gesendeten Strahl in kleinen Details, lassen sich diese von der Referenz im Empfänger präzise unterscheiden. Das Differenzsignal kann anschließend in einem komplexen Prozess analysiert werden. „Es wurde bereits gezeigt, dass man auf diese Art und Weise 32 und mehr verschiedene Signalstellungen codieren kann“, so Spießberger. Damit ist eine sehr schnelle Datenübertragung möglich. Des Weiteren können dadurch Signale mit sehr geringer Leistung nachgewiesen und ausgewertet werden.

Tesat-Spacecom hat bislang Festkörperlaser-basierte Module im Weltraumeinsatz. Das deutsche Technologieunternehmen konnte damit zeigen, dass die optische Kommunikation auch in der Praxis gut funktioniert. Der eingesetzte, vergleichsweise großformatige Festkörperlaser wird von halbleiterbasierten Lasermodulen optisch gepumpt. Die dafür genutzten Pumpmodule wurden am FBH im Rahmen mehrerer DLR-geförderter Projekte entwickelt und realisiert. Durch diesen Aufbau ist die Gesamtkonstruktion größer, unhandlicher und ineffizienter als das rein halbleiterbasierte, kompakte Lasermodul des FBH.

Einem Team des Instituts ist es gelungen, das Modul so zu gestalten, dass es sowohl eine hohe Ausgangsleistung als auch eine geringe Linienbreite aufweist. Unter Linienbreite versteht man die Abweichung von der eingestellten Wellenlänge. Je kleiner sie ist, desto präziser lässt sich das Differenzsignal berechnen. „Wir konnten die Linienbreite auf circa 0,4 Femtometer drücken, das ist enorm wenig bei der Ausgangsleistung des Moduls von einem Watt“, so Spießberger. Die Wellenlänge lässt sich im Gegensatz zum Festkörperlaser über einen weiten Bereich frei wählen. Im Ernstfall könnte daher die ideale Wellenlänge für die Kommunikation ermittelt und das Modul entsprechend angepasst werden. Für die Tests ist der Halbleiterlaser jedoch auf die bereits durch Tesat-Spacecom genutzten 1064 Nanometer eingestellt.

Bis die optische Datenübertragung die gängige Mikrowellentechnik in den Satelliten verdrängt hat, ist es jedoch noch ein weiter Weg, ist Spießberger überzeugt. Zum einen halten die Satellitenbetreiber gerne an etablierten Technologien fest, solange es geht. Zum anderen müsste sein Halbleiterlaser-Bauelement noch für den Weltraumeinsatz qualifiziert werden. Dazu gehören entsprechende Vibrations- und Temperaturtests sowie eine hermetisch versiegelte Hülle. „Das Besondere an dem Prototyp ist aber, dass wir bewiesen haben, dass halbleiterbasierte Lasermodule die Anforderungen der kohärenten optischen Datenübertragung im Weltraum erfüllen“, resümiert Spießberger und ist sich sicher: In 15 Jahren kommen die Betreiber der Satelliten an der optischen Datenübertragung nicht mehr vorbei.

Weitere Informationen
Petra Immerz
Communications & Public Relations Manager

Ferdinand-Braun-Institut
Leibniz-Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Straße 4
12489 Berlin

Tel. +49.30.6392-2626
Fax +49.30.6392-2602
E-Mail petra.immerz@fbh-berlin.de
www.fbh-berlin.de
http://twitter.com/FBH_News
Hintergrundinformationen - das FBH
Das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) ist eines der welt¬weit führenden Institute für anwendungsorientierte und industrienahe Forschung in der Mikro¬wellen¬technik und Opto¬elektronik. Es erforscht elektronische und optische Komponenten, Module und Systeme auf der Basis von Verbindungshalbleitern. Diese sind Schlüsselbausteine für Inno¬vationen in den gesell-schaftlichen Bedarfsfeldern Kommunikation, Energie, Gesundheit und Mobilität. Leistungsstarke und hochbrillante Diodenlaser, UV-Leuchtdioden und hybride Laser¬systeme entwickelt das Institut vom sichtbaren bis zum ultravioletten Spektralbereich. Die Anwen¬dungsfelder reichen von der Medizin¬technik, Präzisionsmesstechnik und Sensorik bis hin zur optischen Satelliten¬kommu¬nikation. In der Mikrowellentechnik realisiert das FBH hocheffiziente, multifunktionale Verstärker und Schaltungen, unter anderem für energieeffiziente Mobilfunk¬systeme und Komponenten zur Erhöhung der Kfz-Fahrsicherheit. Kompakte atmosphärische Mikro¬¬wellen¬plasmaquellen mit Nieder¬spannungsversorgung entwickelt es für medizinische Anwendungen, etwa zur Behandlung von Hauterkrankungen. Die enge Zusammen¬arbeit des FBH mit Industriepartnern und Forschungs¬einrichtungen garantiert die schnelle Umsetzung der Ergeb¬nisse in praktische Anwendungen. Das Institut beschäftigt 230 Mitarbeiter und hat einen Etat von 20 Millionen Euro. Es gehört zum Forschungsverbund Berlin e.V. und ist Mitglied der Leibniz-Gemeinschaft.

Petra Immerz | FBH Berlin
Weitere Informationen:
http://www.fbh-berlin.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Volle Konzentration am Steuer
25.11.2016 | Leibniz-Institut für Arbeitsforschung an der TU Dortmund

nachricht Warum Reibung von der Zahl der Schichten abhängt
24.11.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie