Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Roboter laufen lernen

27.10.2015

Federn statt Muskeln: Roboter "ATRIAS" geht wie ein Mensch

Roboter sollen dem Menschen immer ähnlicher werden. Doch gerade das Laufen auf zwei Beinen – eines der charakteristischsten Merkmale des Menschen – bereitet den Maschinen noch Probleme.


Illustration des Roboters "ATRIAS". (Bild: Mikhail Jones)

Dr. Daniel Renjewski von der TU München hat gemeinsam mit seinen Kollegen an der Oregon State University "ATRIAS" entwickelt, ein Prototyp, der das Laufen auf zwei Beinen so gut beherrscht wie bisher noch kein Roboter. Die Ergebnisse der Studie könnten auch für die Entwicklung von besseren Prothesen eingesetzt werden.

Wenn wir laufen, achten wir nicht bewusst auf die Struktur des Bodens. Unser Körper hat die Fähigkeit, kleine Unebenheiten automatisch auszugleichen, ohne dass wir stolpern oder stehen bleiben müssen. Laufroboter wie etwa der humanoide "Asimo" aus Japan, die dem Menschen vom Aussehen sehr ähneln, gehen im Vergleich dazu allerdings eher langsam und steif. Auch verbrauchen sie für den Vorgang sehr viel Energie.

Menschen und Tiere denken nicht über das Laufen nach, erklärt Dr. Daniel Renjewski vom Lehrstuhl für Echtzeitsysteme und Robotik an der TUM. "Die Intelligenz liegt in der Mechanik." Sehnen und Muskeln federn die Unebenheiten des Untergrunds ab. "Wenn wir laufen, fallen wir sozusagen von einem Schritt in den anderen", sagt Renjewski. Das bedeutet, unser Gang ist zeitweise instabil. Würde das Laufen mitten in der Bewegung unterbrochen, wäre die Folge, dass wir hinfallen. 

Bisherige Laufroboter: Stabil, aber steif

Eine solche dynamische Bewegung ist bei einem Roboter, der nach klassischen technischen Prinzipien entwickelt wurde, schwer zu steuern. Um kontrollieren zu können, dass die Maschine stets stabil ist und nicht umfällt, messen die Ingenieure daher zu jedem Zeitpunkt, wo sich der Roboter befindet und wie sein Schwerpunkt verlagert wird. Ein Preis für diese genaue Steuerung: Die Bewegungen müssen kontrolliert und steif sein. Meist laufen die Maschinen im Labor auf geradem Terrain und müssen nur definierten Hindernissen ausweichen.

Renjewski und seine Kollegen an der Oregon State University hatten das Ziel einen Roboter zu entwickeln, dessen Gangart dem des Menschen gleicht. Den zweibeinigen Roboter, über den sie im Fachblatt "IEEE Transactions on Robotics" berichten, nannten sie "ATRIAS" (Assume The Robot Is A Sphere, übersetzt: Angenommen, der Roboter ist eine Kugel).

Feder-Masse-Modell in Theorie und Praxis

Die Entwicklung von ATRIAS basiert auf dem sogenannten Feder-Masse-Modell, das 1989 erstmals vorgestellt wurde. Dieses Modell beschreibt das grundlegende Prinzip des Laufens auf zwei Beinen. Die gesamte Masse des Körpers ist dabei in einem Punkt gebündelt, der mit einer masselosen Feder verbunden ist. Die Feder steht dabei vereinfacht für die Muskeln, Knochen und Sehnen, auf die in der Realität die Kräfte beim Gehen wirken.

Um dieses theoretische Modell technisch umsetzen zu können, mussten die Forscher noch einige Anpassungen vornehmen. Denn in der Realität besitzt die Feder eine Masse. Auch wird die mechanische Energie im System im Gegensatz zur Theorie durch Reibung teilweise in Wärme umgewandelt und steht nicht mehr für die Bewegung des Systems zur Verfügung. 

ATRIAS kann nicht aus der Ruhe bringen

Diese theoretisch fehlende mechanische Energie wird im Roboter durch Motoren zur Verfügung gestellt. ATRIAS besitzt je drei Motoren pro Bein. Zwei der Motoren wirken direkt auf die beiden Beinfedern ein. Der dritte Motor sorgt für die seitliche Stabilität des Roboters. Die Beine von ATRIAS machen nur zehn Prozent seiner Gesamtmasse aus, um so nahe wie möglich an die theoretische Masselosigkeit heranzureichen. 

Versuche zeigten, dass ATRIAS dreimal so effizient läuft wie andere menschengroße zweibeinige Roboter. Auch Krafteinwirkungen von außen wie ein Stoß durch einen Ball oder holperiger Boden kann ihn nicht aus der Balance bringen. Prof. Jonathan Hurst von der Oregon State University und Initiator der Studie, ist sich sicher, dass diese Art der Fortbewegung sich in Zukunft bei den Laufrobotern durchsetzen wird. Wenn die Technologie weiter verbessert wird, könnten Roboter seiner Einschätzung nach zum Beispiel als Helfer bei der Feuerwehr eingesetzt werden.

Entwicklung besserer Prothesen

Die Forschungsergebnisse sind aber auch für Menschen von Bedeutung. Renjewski, der zum Mai diesen Jahres an die TUM wechselte, beschäftigt sich in einem nächsten Schritt mit der Übertragung der gewonnenen Erkenntnisse auf Roboter zur Gangrehabilitation und Prothesen.

Originalpublikation: Daniel Renjewski, Alexander Sprowitz, Andrew Peekema, Mikhail Jones, Jonathan Hurst: "Exciting Engineered Passive Dynamics in a Bipedal Robot", IEEE Transactions on Robotics, Volume 31, Issue 5;
DOI: 10.1109/TRO.2015.2473456

Die Arbeit wurde gefördert von der National Science Foundation, der Defense Advanced Research Projects Agency und dem Human Frontier Science Program.

Kontakt

Dr. Daniel Renjewski
Technische Universität München
Lehrstuhl für Echtzeitsysteme und Robotik (Prof. Alois Knoll)
+49 (0)89 289 18133
daniel.renjewski@tum.de

Prof. Jonathan Hurst
Oregon State University
Associate Professor of Mechanical Engineering
+1-541-737-7010
jonathan.hurst@oregonstate.edu

Weitere Informationen:

https://flic.kr/p/s6hFdj Foto zum Download (Flickr)
https://www.youtube.com/watch?v=dl7KUUVHC-M Video auf Youtube
http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/32711/ Meldung auf der TUM-Webseite

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/32711/

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder
19.01.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab
18.01.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie