Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Virtuelle Kamerafahrten wie aus Hollywood

05.01.2009
Unser Sehzentrum macht es vor: Aus dem Input unseres rechten und linken Auges rekonstruiert es, welche räumlichen Dimensionen das beobachtete Objekt hat. Dieselbe Aufgabe bringt jedoch Computer regelmäßig zur Verzweiflung.

Informatiker der Universität Bonn haben dafür nun einen Lösungsansatz entwickelt, der die meisten gängigen Verfahren in den Schatten stellt. Die Methode erlaubt beispielsweise auch die Berechnung virtueller Kamerafahrten, für die der Film "Die Matrix" so berühmt wurde.

Im Film "Die Matrix" gibt es eine atemberaubende Filmsequenz: Während Filmheld Neo von einem Widersacher beschossen wird, verlangsamt sich scheinbar die Zeit. Neo weicht der wie in Zeitlupe näher kommenden Kugel aus; die Kamera umfährt ihn dabei und zeichnet seine akrobatischen Verrenkungen von allen Seiten auf. Diese spektakuläre Kamerafahrt ist es, die den Reiz der Szene ausmacht.

Doch es ist wie so oft in Hollywood: Sie ist nicht echt. John Gaeta - seines Zeichens verantwortlich für die Spezialeffekte des Films - hatte am Set 36 Kameras installiert. Diese hielten die Szene aus unterschiedlichen Blickwinkeln fest. Erst am Rechner entstand daraus später der Eindruck, eine einzige Kamera habe Neo während des Schusses rasant umkreist.

Der Spezialeffekt nennt sich "Bullet Time". Er hat sicher seinen Teil zum Erfolg von "Die Matrix" beigetragen. Dennoch hat Professor Dr. Daniel Cremers für die Szene nur ein Lächeln übrig. "John Gaeta hatte es leicht", stellt er fest. "Er konnte schummeln." Soll heißen: Bis der Effekt so realistisch aussah, war am Rechner jede Menge Retouchier-Arbeit angesagt. Cremers ist Informatiker; Spezialgebiet: Computer Vision. Sein Team und er haben ein Verfahren entwickelt, das Handarbeit bei derartigen Tricksequenzen weitgehend überflüssig macht.

Der Bonner Forscher hat dabei nicht vor, den Special Effects-Abteilungen von Hollywood ins Handwerk zu pfuschen. "Uns geht es um ein allgemeineres Problem", betont der 37-Jährige: "Wir fotografieren ein Objekt aus verschiedenen Blickwinkeln. Aus diesen Aufnahmen wollen wir dann die dreidimensionale Gestalt des Objekts rekonstruieren." Weiß man, wie das Fotomotiv in 3D aussieht, lässt sich am Computer relativ einfach eine Kamerafahrt programmieren. Und netterweise funktioniert das Ganze nicht nur mit Fotos, sondern eben auch mit Filmsequenzen. "Im Prinzip können wir damit auch 'Bullet Time'-Effekte berechnen", sagt Cremers.

Unser Gehirn führt permanent 3D-Rekonstruktionen durch. Wenn wir vor uns eine Kaffeetasse sehen, wissen wir intuitiv, wie weit wir den Arm ausstrecken müssen, um den Henkel zu greifen. Unsere Augen sehen die Tasse nämlich aus unterschiedlichen Blickwinkeln. Die beiden Bilder, die sie liefern, weichen daher leicht voneinander ab. Aus diesem Unterschied kann das Sehzentrum den Abstand des Henkels berechnen.

Das hört sich simpel an. Diese Fähigkeit in einen Algorithmus zu übersetzen, ist aber extrem schwierig. Rund um den Globus ist momentan ein Wettbewerb um das beste Verfahren im Gange. "Wir liegen derzeit auf Platz 2", erläutert Daniel Cremers nicht ohne Stolz. "Unsere Methode ist überdies das weltweit erste konvexe Optimierungsverfahren. Das bedeutet, dass sie unter allen denkbaren Oberflächen nachweislich die beste berechnet."

Um zu berechnen, wie weit ein beliebiger Punkt auf der Kaffeetasse von zwei Kameras entfernt ist, muss man zwei Dinge wissen. Erstens: Position und Ausrichtung der Kameras. Zweitens: die Information, welche Bildpunkte in beiden Aufnahmen miteinander korrespondieren. Frage eins lässt sich leicht klären. Frage zwei ist es, an dem sich der Computer die nicht vorhandenen Zähne ausbeißt: Er weiß einfach nicht, welcher Bildpunkt in Foto 1 zu welchem Bildpunkt in Foto 2 gehört. Der Algorithmus der Bonner Informatiker löst genau diese Aufgabe.

Das Verfahren lässt sich beispielsweise nutzen, um wertvolle Museumsexponate dreidimensional zu erfassen. "Nehmen Sie etwa eine alte chinesische Vase", sagt Cremers. "Um Sie zu betrachten, müssen Sie ins Museum nach Peking reisen. Wenn Sie Glück haben, können Sie sich vielleicht noch Fotos im Netz anschauen. Oft fehlt dann aber genau das Detail, das Sie interessiert. Eine 3D-Rekonstruktion lässt sich dagegen am Rechner drehen. Sie können sie mit einer virtuellen Lampe beleuchten, um Einzelheiten besser zu erkennen. Sie können die Beleuchtungsrichtung sogar ändern, etwa um Oberflächenstrukturen genauer herauszuarbeiten oder störende Lichtreflexe zu vermeiden."

Mitunter kann man durch 3D-Rekonstruktion sogar unrettbar verloren geglaubten Kunstobjekten neues (wenn auch nur virtuelles) Leben einhauchen. Ein Beispiel ist die berühmte Buddha-Statue von Bamiyan in Afghanistan. Die Taliban hatten das 55 Meter hohe Kunstwerk im März 2001 zerstört. Seitdem existieren davon nur noch Fotos. Mit Hilfe dieser Bilder ist es inzwischen gelungen, die Statue im Computer zu rekonstruieren. Selbst ganze archäologische Ausgrabungsstätten lassen sich auf diese Weise in digitale 3D-Modelle übertragen. Das wird auch heute schon gemacht, aber vergleichsweise primitiv. Cremers: "Mit unserer Methode lassen sich derartige 3D Rekonstruktionen noch deutlich verbessern und automatisieren."

Kontakt:
Professor Dr. Daniel Cremers
Universität Bonn, Arbeitsgruppe Computer Vision
Telefon: 0228/73-4380
Email: dcremers@cs.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Mehrkernprozessoren für Mobilität und Industrie 4.0
07.12.2016 | Karlsruher Institut für Technologie

nachricht Wenn das Handy heimlich zuhört: Abwehr ungewollten Audiotrackings durch akustische Cookies
07.12.2016 | Fachhochschule St. Pölten

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie