Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Virtuelle Kamerafahrten wie aus Hollywood

05.01.2009
Unser Sehzentrum macht es vor: Aus dem Input unseres rechten und linken Auges rekonstruiert es, welche räumlichen Dimensionen das beobachtete Objekt hat. Dieselbe Aufgabe bringt jedoch Computer regelmäßig zur Verzweiflung.

Informatiker der Universität Bonn haben dafür nun einen Lösungsansatz entwickelt, der die meisten gängigen Verfahren in den Schatten stellt. Die Methode erlaubt beispielsweise auch die Berechnung virtueller Kamerafahrten, für die der Film "Die Matrix" so berühmt wurde.

Im Film "Die Matrix" gibt es eine atemberaubende Filmsequenz: Während Filmheld Neo von einem Widersacher beschossen wird, verlangsamt sich scheinbar die Zeit. Neo weicht der wie in Zeitlupe näher kommenden Kugel aus; die Kamera umfährt ihn dabei und zeichnet seine akrobatischen Verrenkungen von allen Seiten auf. Diese spektakuläre Kamerafahrt ist es, die den Reiz der Szene ausmacht.

Doch es ist wie so oft in Hollywood: Sie ist nicht echt. John Gaeta - seines Zeichens verantwortlich für die Spezialeffekte des Films - hatte am Set 36 Kameras installiert. Diese hielten die Szene aus unterschiedlichen Blickwinkeln fest. Erst am Rechner entstand daraus später der Eindruck, eine einzige Kamera habe Neo während des Schusses rasant umkreist.

Der Spezialeffekt nennt sich "Bullet Time". Er hat sicher seinen Teil zum Erfolg von "Die Matrix" beigetragen. Dennoch hat Professor Dr. Daniel Cremers für die Szene nur ein Lächeln übrig. "John Gaeta hatte es leicht", stellt er fest. "Er konnte schummeln." Soll heißen: Bis der Effekt so realistisch aussah, war am Rechner jede Menge Retouchier-Arbeit angesagt. Cremers ist Informatiker; Spezialgebiet: Computer Vision. Sein Team und er haben ein Verfahren entwickelt, das Handarbeit bei derartigen Tricksequenzen weitgehend überflüssig macht.

Der Bonner Forscher hat dabei nicht vor, den Special Effects-Abteilungen von Hollywood ins Handwerk zu pfuschen. "Uns geht es um ein allgemeineres Problem", betont der 37-Jährige: "Wir fotografieren ein Objekt aus verschiedenen Blickwinkeln. Aus diesen Aufnahmen wollen wir dann die dreidimensionale Gestalt des Objekts rekonstruieren." Weiß man, wie das Fotomotiv in 3D aussieht, lässt sich am Computer relativ einfach eine Kamerafahrt programmieren. Und netterweise funktioniert das Ganze nicht nur mit Fotos, sondern eben auch mit Filmsequenzen. "Im Prinzip können wir damit auch 'Bullet Time'-Effekte berechnen", sagt Cremers.

Unser Gehirn führt permanent 3D-Rekonstruktionen durch. Wenn wir vor uns eine Kaffeetasse sehen, wissen wir intuitiv, wie weit wir den Arm ausstrecken müssen, um den Henkel zu greifen. Unsere Augen sehen die Tasse nämlich aus unterschiedlichen Blickwinkeln. Die beiden Bilder, die sie liefern, weichen daher leicht voneinander ab. Aus diesem Unterschied kann das Sehzentrum den Abstand des Henkels berechnen.

Das hört sich simpel an. Diese Fähigkeit in einen Algorithmus zu übersetzen, ist aber extrem schwierig. Rund um den Globus ist momentan ein Wettbewerb um das beste Verfahren im Gange. "Wir liegen derzeit auf Platz 2", erläutert Daniel Cremers nicht ohne Stolz. "Unsere Methode ist überdies das weltweit erste konvexe Optimierungsverfahren. Das bedeutet, dass sie unter allen denkbaren Oberflächen nachweislich die beste berechnet."

Um zu berechnen, wie weit ein beliebiger Punkt auf der Kaffeetasse von zwei Kameras entfernt ist, muss man zwei Dinge wissen. Erstens: Position und Ausrichtung der Kameras. Zweitens: die Information, welche Bildpunkte in beiden Aufnahmen miteinander korrespondieren. Frage eins lässt sich leicht klären. Frage zwei ist es, an dem sich der Computer die nicht vorhandenen Zähne ausbeißt: Er weiß einfach nicht, welcher Bildpunkt in Foto 1 zu welchem Bildpunkt in Foto 2 gehört. Der Algorithmus der Bonner Informatiker löst genau diese Aufgabe.

Das Verfahren lässt sich beispielsweise nutzen, um wertvolle Museumsexponate dreidimensional zu erfassen. "Nehmen Sie etwa eine alte chinesische Vase", sagt Cremers. "Um Sie zu betrachten, müssen Sie ins Museum nach Peking reisen. Wenn Sie Glück haben, können Sie sich vielleicht noch Fotos im Netz anschauen. Oft fehlt dann aber genau das Detail, das Sie interessiert. Eine 3D-Rekonstruktion lässt sich dagegen am Rechner drehen. Sie können sie mit einer virtuellen Lampe beleuchten, um Einzelheiten besser zu erkennen. Sie können die Beleuchtungsrichtung sogar ändern, etwa um Oberflächenstrukturen genauer herauszuarbeiten oder störende Lichtreflexe zu vermeiden."

Mitunter kann man durch 3D-Rekonstruktion sogar unrettbar verloren geglaubten Kunstobjekten neues (wenn auch nur virtuelles) Leben einhauchen. Ein Beispiel ist die berühmte Buddha-Statue von Bamiyan in Afghanistan. Die Taliban hatten das 55 Meter hohe Kunstwerk im März 2001 zerstört. Seitdem existieren davon nur noch Fotos. Mit Hilfe dieser Bilder ist es inzwischen gelungen, die Statue im Computer zu rekonstruieren. Selbst ganze archäologische Ausgrabungsstätten lassen sich auf diese Weise in digitale 3D-Modelle übertragen. Das wird auch heute schon gemacht, aber vergleichsweise primitiv. Cremers: "Mit unserer Methode lassen sich derartige 3D Rekonstruktionen noch deutlich verbessern und automatisieren."

Kontakt:
Professor Dr. Daniel Cremers
Universität Bonn, Arbeitsgruppe Computer Vision
Telefon: 0228/73-4380
Email: dcremers@cs.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Industrie 4.0: Fremde Eindringlinge im Unternehmensnetz erkennen
16.04.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht Die Thermodynamik des Rechnens
11.04.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

20.04.2018 | Biowissenschaften Chemie

Digitale Medien für die Aus- und Weiterbildung: Schweißsimulator auf Hannover Messe live erleben

20.04.2018 | HANNOVER MESSE

Neurodegenerative Erkrankungen - Fatale Tröpfchen

20.04.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics