Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Virenscanner für Biologische Viren: Neuer Sensor und Software können mobil eingesetzt werden

22.10.2012
Für die meisten Menschen ist es nichts Neues, dass Computer virtuelle Viren aufspüren können.

Computer spielen jedoch auch eine Schlüsselrolle bei der Suche nach biologischen Viren: Dank moderner Parallel-Prozessoren ist es möglich, rechenaufwändige Analyseverfahren zur Erkennung solcher Viren vor Ort mit Hilfe von tragbaren Geräten, wie etwa Laptops, durchzuführen.

Ermöglicht wird dies durch eine neuartige mobile Sensor-Technologie, die im Rahmen des Sonderforschungsbereiches 876 an der Technischen Universität Dortmund in Kooperation mit dem Leibniz-Institut für Analytische Wissenschaften (ISAS) erforscht wird.

Unter anderem an Flughäfen könnte die neue Technologie genutzt werden, um die Einschleppung und weitere Ausbreitung von Viren aus Risiko-Regionen zu verhindern. „Die Information, ob eine Infektion vorliegt, ist mit unserem Verfahren unmittelbar vor Ort verfügbar“, sagt Dominic Siedhoff, Diplom-Informatiker an der Technischen Universität Dortmund. Die Grundlage dafür ist ein neuer Virensensor.

Der Sensor

Der am ISAS von Dr. Alexander Zybin entwickelte PAMONO-Sensor ist mit einer reflektierenden Goldfolie beschichtet, die mit Laserlicht bestrahlt wird. Haften nanogroße Kleinstobjekte, wie etwa Pulver oder Feinstaub auf dem Sensor an, können diese indirekt nachgewiesen werden – und zwar durch die veränderten Reflexionen der Goldfolie. Wird der Sensor mit Antikörpern präpariert, werden daran anhaftende Viren auch für optische Mikroskope indirekt nachweisbar. „Direkt lassen sich Viren mit optischen Mikroskopen überhaupt nicht beobachten, da sie meistens kleiner als die halbe Wellenlänge des verwendeten Lichts sind, was eine untere Grenze für optische Mikroskope darstellt“, so Alexander Zybin. „Der PAMONO-Sensor umgeht das Problem, indem er Veränderungen in den Reflexionen der Goldfolie auf der Mikrometer-Ebene beobachtet, die durch die Viren auf der Nanometer-Ebene verursacht werden. Dieser indirekte Nachweis kann durch Methoden der optischen Mikroskopie geleistet werden.“

Die Technologie im Detail

Die Brücke zwischen Mikrometer- und Nanometer-Bereich schlägt der sogenannte Oberflächen-Plasmonen-Resonanz-Effekt: Wird die Sensor-Oberfläche mit einem Laser beleuchtet, so sorgt dieser Effekt dafür, dass ein kleiner Bereich um jedes Virus herum mehr Licht reflektiert als virenfreie Bereiche. Obwohl ein Virus nur nanometergroß ist, ist der Bereich erhöhter Reflektivität mikrometergroß und kann deshalb als schwacher Lichtfleck im Mikroskop erkannt werden. Dies ermöglicht es, die Anhaftung selbst einzelner Viren nachzuweisen. PAMONO ist zurzeit die einzige optische Mikroskopie-Methode, die hierzu in der Lage ist. Doch das ist noch nicht alles: „Neben der Virenerkennung ließe sich das neue Verfahren auch zum Nachweis der Funktionsfähigkeit neuer Antikörper oder zur Feinstaubanalyse einsetzen“, so Alexander Zybin.

TU-Forscher entwickeln smarte Algorithmen für Echtzeit-Diagnosen

Eine Gruppe von Informatikern der Technischen Universität Dortmund arbeitet an der automatischen Auswertung der Sensor-Daten. Das Ziel ihrer Forschungen besteht darin, medizinischem Fachpersonal schnelle und zuverlässige Virus-Diagnosen zu ermöglichen. Die dazu entwickelte Analyse-Software wird für tragbare Computer optimiert, um den mobilen Einsatz vor Ort zu erlauben.
Diese Forschung ist eines von zwölf Projekten im Sonderforschungsbereich 876. Prof. Katharina Morik, die Sprecherin dieses Forschungsbereichs, fasst das Leitmotiv der Projekte zusammen: „Unser Fernziel ist es, intelligente Datenanalyse in mobile Geräte einzubetten. Zum Beispiel sollen Navigationsgeräte, Mobiltelefone, Atemluftgeräte und eben Virenscanner Information aus großen Datenmengen gewinnen können.“

So auch bei PAMONO: Medizinisches Fachpersonal soll in Echtzeit zuverlässige Virus-Diagnosen per Sensor und Laptop stellen können – und das trotz des Informationsberges, der bei der Untersuchung mit dem neuen Sensor entsteht. Dabei müssen die Ressourcenbeschränkungen von Laptops beachtet werden. Konkret: Durch optimale Ausnutzung der Hardware soll der Laptop-Akku lange halten, während trotzdem Ergebnisse unmittelbar, in Echtzeit, zur Verfügung stehen.

Preiswertes Verfahren

Ein Prototyp der Analyse-Software wurde bereits fertiggestellt. Er benötigt keine teure Spezial-Hardware, sondern nutzt die Möglichkeiten handelsüblicher Mehrkernprozessoren, die beispielsweise auf Grafikkarten und in Spielekonsolen verbaut werden. Mit Materialkosten von 5000 Euro ist dieser mobile, optische Virensensor deutlich günstiger als andere Methoden. Dennoch lassen sich mit ihm bereits geringe Virus-Konzentrationen mit hoher Zuverlässigkeit und ohne Verzögerung nachweisen.

Kontakt:
Dipl.-Inform. Dominic Siedhoff
TU Dortmund, Fakultät für Informatik
Telefon: (0231) 755 - 6125
E-Mail: dominic.siedhoff@tu-dortmund.de

Angelika Mikus | idw
Weitere Informationen:
http://www.tu-dortmund.de
http://sfb876.tu-dortmund.de/SPP/sfb876-b2.html

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Volle Konzentration am Steuer
25.11.2016 | Leibniz-Institut für Arbeitsforschung an der TU Dortmund

nachricht Warum Reibung von der Zahl der Schichten abhängt
24.11.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie