Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stencilmasken ermöglichen Rekord bei organischen Transistoren

09.12.2010
Kleinste und schnellste organische Dünnfilmtransistoren auf der IEDM 2010 in San Francisco präsentiert

Stencilmasken ermöglichen Rekord bei organischen Transistoren Während der IEDM 2010 (IEEE International Electron Devices Meeting), die von 5. bis 8. Dezember in San Francisco stattfand, präsentierten Wissenschaftler von bekannten Unternehmen, wie IBM, Intel, Samsung und TSMC, die neuesten Entwicklungen und führende Akademikerkreise stellten ihre neuesten Errungenschaften vor.


Stencilmasken aus Silizium
(Aufsicht und Schrägsicht)


Organischer Dünnfilmtransistor (OTFT)

Darunter sind auch Forscher vom Institut für Mikroelektronik Stuttgart (IMS CHIPS) und dem Max-Planck-Institut (MPI) für Festkörperforschung in Stuttgart. Forscher der zwei Institute haben sich zusammengeschlossen, um die kleinsten und schnellsten organischen Dünnfilmtransistoren, die je in einem Fertigungsprozess hergestellt wurden, vorzustellen.

Die Gruppe um Dr. Hagen Klauk vom MPI ist international führend in der Forschung und Entwicklung von organischen Dünnfilmtransistoren (OTFT) mit einem besonderen Schwerpunkt auf Niederspannungsprozessen (50 V) entwickelt, indem OTFTs vergleichsweise schnell reagieren. Neben der Versorgungsspannung wird die Transistorgeschwindigkeit größtenteils durch die Kanallänge des Transistors bestimmt, die sich über den Gatekontakt steuern lässt. Je kürzer der Kanal, desto schneller der Transistor. Bis vor kurzem nutzte die Gruppe um Dr. Hagen Klauk die Verdampfung von Materialien durch eine Kunststofflochmaske, die durch einen Laserschnitt strukturiert wird.

Die Mindestkanallänge für diese Strukturierungstechnik ist 20 μm. IMS CHIPS unter der Leitung von Prof. Joachim Burghartz ist weltweit führend im Bereich Nanostrukturierung. Das IMS CHIPSTeam um Dr. Florian Letzkus ist in der Lage Siliziummembran-Stencilmasken mit Detailauflösungen bis hinab zu 100 nm herzustellen, abhängig von der Dicke der Membran. So wurden Stencil-Masken mit einer Transistorenkanallänge von weniger als 1 μm gefertigt, die der Gruppe am MPI die Möglichkeit bot, Transistoren mit einem 20mal kürzeren Kanal als dies bisher möglich war, zu fertigen. Diese Transistoren konnten 100mal so schnell schalten, wie die OTFTs, die mit Kunststofflochmasken hergestellt wurden. Ein weiterer Erfolg war die mechanische Qualität der Silizium-Stencilmasken, die gleichzeitig über hervorragende Festigkeit und Stabilität verfügen.

Bei den Transistoren wurden im gesamten Maskenbereich sehr konsistente Eigenschaften erzielt. Dadurch wurde ein Entwurf der Schaltkreise vergleichbar dem bei siliziumbasierten Mikrochips möglich. Im Gegensatz zu den Stencilmasken aus Silizium zeigen die Kunststofflochmasken eine faltige Oberfläche und lassen sich nicht vollständig planar auf dem Substrat aufbringen. Dadurch entsteht eine ziemlich große Differenz bei den Bauteilemerkmalen, die die Auswahl an möglichen Schaltungsstrukturen deutlich senkt.

Hintergrundinformation:

Der OTFT wird als Basistechnologie für künftige flexible Elektronikprodukte gewertet. Dazu gehören flexible Displays (so genanntes elektronisches Papier), diagnostische Verbände für die medizinische Überwachung und Lebenswissenschaft, HF-ID-Tags (RF-ID), die als intelligente Barcodes verwendet werden können, intelligente Fahrkarten und intelligente Leitsysteme. Die Fertigungstechnologie unterscheidet sich deutlich von der Mikroelektronikfertigung. Flexible Elektronik wird mit der Rolle-zu-Rolle-Drucktechnologie gefertigt, die über einen hohen Durchsatz verfügt, der bei Papierdruckprozessen genutzt wird. Es besteht sogar die Theorie, dass sich elektronisches Papier durch den Einsatz von Tintenstrahldrucker fertigen lässt, die denen im täglichen Büroalltag ähneln. Während flexible Elektronik vielleicht einen erheblichen Teil des Niedrigkosten-Elektronikmarkts erobern kann, wird sie wegen mangelnder Leistung und Integrationsdichte nicht mit der Mikroelektronik konkurrieren können. Aufgrund dessen werden künftig vermutlich Hybridlösungen entstehen, die großflächige organische Elektronik mit dünnen flexiblen Siliziumchips verbinden können. Daher ist der Bedarf an einer organischen elektronischen Transistortechnologie, die mit der gleichen Netzspannung arbeitet wie die Mikroelektronik außerordentlich groß.

Übersicht IMS CHIPS

Das Institut für Mikroelektronik Stuttgart (IMS CHIPS) ist eine gemeinnützige Stiftung des Landes Baden-Württemberg und betreibt wirtschaftsnahe Forschung auf den Gebieten Silizium- Technologie, Anwenderspezifische Schaltkreise (ASIC), Nanostrukturierung und Bildsensorik und engagiert sich in der beruflichen Weiterbildung. Das Institut ist Teil der Innovationsallianz Baden-Württemberg und sieht sich als Partner kleiner und mittlerer Unternehmen insbesondere in Baden-Württemberg und arbeitet mit international führenden Halbleiterunternehmen und Zulieferern zusammen. Unter der Leitung von Prof. Joachim Burghartz verfügt das Institut über 100 hochqualifizierte Mitarbeiter, die ihre Expertise in die wichtige Mikroelektronik und deren Umsetzung für die Industrie einbringen. www.ims-chips.de

Übersicht Max-Planck-Institut für Festkörperforschung – Gruppe organische Elektronik

Die Organic Electronics Group wurde 2005 gegründet. Der Forschungsbereich konzentriert sich auf neue funktionale organische Materialien sowie auf die Fertigung und Charakterisierung von organischen und elektronischen Bauteilen im Nanobereich, z. B. leistungsstarke organischen Dünnfilmtransistoren, Feldeffekttransistoren aus Kohlenstoff-Nano-Röhrchen (carbon nano tubes) usw. Die wissenschaftliche Arbeit im Bereich organischer Elektronik ist interdisziplinär und umfasst das Design, die Synthese und Verarbeitung von funktionalen organischen und anorganischen Materialien, die Entwicklung von fortschrittlichen Mikro- und Nanofertigungstechniken, Bauteile- und Schaltungsdesign sowie Material- und Bauteilecharakterisierung. www.fkf.mpg.de/oe/

Pressekontakt:
Thomas Deuble
Tel.: +49-711-21855-244
E-Mail: deuble@ims-chips.de

Thomas Deuble | IMS CHIPS
Weitere Informationen:
http://www.ims-chips.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Mehrkernprozessoren für Mobilität und Industrie 4.0
07.12.2016 | Karlsruher Institut für Technologie

nachricht Wenn das Handy heimlich zuhört: Abwehr ungewollten Audiotrackings durch akustische Cookies
07.12.2016 | Fachhochschule St. Pölten

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops