Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spin-Laser: Schnellerer Datentransfer dank Quantenphysik

25.02.2015

RUB-Ingenieure haben ein neues Konzept entwickelt, um die Datenübertragung in Serverfarmen zu beschleunigen. Das Team vom Lehrstuhl Photonik und Terahertztechnologie setzt zu diesem Zweck auf eine quantenmechanische Größe, den Spin. „RUBIN“, das Wissenschaftsmagazin der Ruhr-Universität Bochum, berichtet, wie die Forscher sogenannte Spin-Laser für die Datenübertragung optimieren.

Polarisationsoszillation statt Modulation der Lichtintensität


Komplizierter Messaufbau: Markus Lindemann und Nils Gerhardt (rechts) testen die Einkopplung des Lasersystems in die Glasfaser.

© RUBIN, Foto: Gorczany


Das Team vom Lehrstuhl Photonik und Terahertztechnologie möchte die Datenübertragung in Serverfarmen schneller machen.

© RUBIN, Foto: Gorczany

Bislang werden Informationen in Serverfarmen auf kurzem Wege über Glasfaserkabel zwischen den einzelnen Rechnern transportiert. Halbleiterlaser erzeugen Lichtpulse; die Information ist in der Änderung der Lichtintensität codiert. Je schneller man die Lichtintensität variiert, desto schneller kann man Informationen übertragen. Fundamentale physikalische Grenzen setzen der Geschwindigkeit jedoch ein Limit. Das RUB-Team um Prof. Dr. Martin Hofmann und PD Dr. Nils Gerhardt setzt daher nicht auf eine Modulation der Lichtintensität, sondern bedient sich der Polarisation des Lichts.

Spins ausrichten und oszillierende Polarisation erzeugen

Mit einem Laser generieren RUB-Forscher eine spezielle Form von zirkular polarisiertem Licht, in dem die Polarisationsrichtung oszilliert, also ständig zwischen zwei Drehrichtungen hin und her wechselt. Dieser Wechsel kann viel schneller erfolgen, als sich die Intensität des Laserlichtes ändern kann. Denn: Die Variation der Lichtintensität durch Strommodulation beruht auf der Bewegung vieler Elektronen, die sich nicht beliebig schnell verschieben lassen. Die Polarisationsoszillation hingegen basiert auf einer quantenmechanischen Eigenschaft der Elektronen, dem Spin, und kommt mit der Bewegung von wenigen Elektronen aus. Indem die Forscher die Spins einer Gruppe von Elektronen im Laser in die gleiche Orientierung bringen, erzeugen sie die oszillierende Polarisation. Den zugrunde liegenden Effekt haben sie im Detail entschlüsselt.

Ausführlicher Beitrag im Wissenschaftsmagazin RUBIN

Ein ausführlicher Beitrag inklusive Bildmaterial findet sich im Onlinemagazin RUBIN, dem Wissenschaftsmagazin der RUB: http://rubin.rub.de/de/spin-laser. Text und Bilder aus dem Downloadbereich dürfen unter Angabe des Copyrights für redaktionelle Zwecke frei verwendet werden. Sie möchten über neu erscheinende RUBIN-Beiträge auf dem Laufenden bleiben? Dann abonnieren Sie unseren Newsfeed unter http://rubin.rub.de/feed/rubin-de.rss.

Weitere Informationen

Prof. Dr. Martin Hofmann, Photonik und Terahertztechnologie, Fakultät für Elektrotechnik und Informationstechnik der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-22259, E-Mail: martin.hofmann@rub.de

Dr. Nils Gerhardt, Photonik und Terahertztechnologie, Fakultät für Elektrotechnik und Informationstechnik der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-26514, E-Mail: nils.gerhardt@rub.de


Dr. Julia Weiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Forschungsprojekt: Zukünftige Fahrzeugtechnologien im Open Region Lab – ZuFOR
30.03.2017 | Ostfalia Hochschule für angewandte Wissenschaften

nachricht Schnelle Time-to-Market durch standardisierte Datacenter-Container
28.03.2017 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Herzerkrankungen: Wenn weniger mehr ist

30.03.2017 | Medizin Gesundheit

Flipper auf atomarem Niveau

30.03.2017 | Physik Astronomie

Europaweite Studie zu „Smart Engineering“

30.03.2017 | Studien Analysen