Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was soziale Netzwerke im Internet auch über Nicht-Mitglieder wissen können

02.05.2012
Heidelberger Forscher untersuchen die automatische Generierung von sogenannten Schattenprofilen

Was können soziale Netzwerke im Internet über Menschen wissen, die selbst kein Nutzerprofil besitzen, aber Freunde von Mitgliedern sind? Das haben Forscher des Interdisziplinären Zentrums für Wissenschaftliches Rechnen der Universität Heidelberg untersucht.


Soziale Netzwerke teilen die Gesellschaft in Mitglieder und Nicht-Mitglieder auf. Beziehungen zwischen Nicht-Mitgliedern, deren E-Mail-Adressen dem Netzwerk von Mitgliedern mitgeteilt wurden (rote Verbindunglinien), können anhand der beidseitig bestätigten Freundschaftsbeziehungen zwischen Mitgliedern (schwarze Linien) und ihren Verbindungen zu Nicht-Mitgliedern (grüne Linien) mit großer Wahrscheinlichkeit vorhergesagt werden.
Abbildung: Ágnes Horvát

Ihre Arbeiten zeigen, dass sich Informationen aus der Netzwerkstruktur von Mitgliedern auf Nicht-Mitglieder übertragen und mit Hilfe von netzwerkanalytischen Strukturmerkmalen auswerten lassen. Unter bestimmten Voraussetzungen ist es möglich, etwa 40 Prozent der existierenden Freundschaftsbeziehungen zwischen Nicht-Mitgliedern auf der Basis reiner Kontaktdaten korrekt vorherzusagen.

Bereits seit einigen Jahren gehen Wissenschaftler der Frage nach, welche Schlussfolgerungen sich mit Hilfe des Computers aus direkt oder indirekt eingegebenen Daten durch entsprechende Lern- und Vorhersagealgorithmen ziehen lassen. In einem sozialen Netzwerk können auch Angaben wie sexuelle Orientierung oder politische Ausrichtung, die ein Mitglied nicht selbst angegeben hat, mit sehr hoher Präzision „berechnet“ werden, wenn genug Freunde des betreffenden Nutzers die entsprechende Information über sich selbst freigegeben haben. „Sobald bestätigte Freundschaftsbeziehungen bekannt sind, ist die Vorhersage bestimmter unbekannter Eigenschaften keine allzu große Herausforderung mehr für die maschinelle Datenanalyse“, sagt Prof. Dr. Fred Hamprecht, Mitbegründer des Heidelberg Collaboratory for Image Processing (HCI).

Untersuchungen dieser Art beschränken sich bislang jedoch auf Nutzer von sozialen Netzwerken, also auf Personen, die dort über ein Nutzerprofil verfügen – und damit den jeweiligen Datenschutzbedingungen zugestimmt haben. „Nicht-Mitglieder besitzen hingegen keine derartige Vereinbarung. Aus diesem Grund haben wir ihre Anfälligkeit für die automatische Generierung sogenannter Schattenprofile untersucht“, erläutert Prof. Dr. Katharina Zweig, die bis vor kurzem am Interdisziplinären Zentrum für Wissenschaftliches Rechnen (IWR) der Universität Heidelberg tätig war.

In einem sozialen Netzwerk im Internet ist es möglich, unter anderem mit Hilfe einer Funktion zum Auffinden von Bekannten an Informationen über Nicht-Mitglieder zu gelangen. So werden Neumitglieder von Facebook dazu aufgefordert, bei ihrer Registrierung dem Netzwerk ihre kompletten E-Mail-Kontakte zur Verfügung zu stellen – auch Kontakte zu Personen, die selbst nicht Mitglied bei Facebook sind. „Dieses sehr grundlegende Wissen darüber, wer mit wem in einem sozialen Netzwerk bekannt ist, lässt sich mit Informationen darüber verknüpfen, wen Nutzer außerhalb des Netzwerks kennen. Mit dieser Verknüpfung kann dann wiederum ein wesentlicher Teil des Bekanntschaftnetzes zwischen Nicht-Mitgliedern abgeleitet werden“, erläutert Ágnes Horvát, die am IWR forscht.

Für ihre Berechnungen nutzten die Heidelberger Wissenschaftler ein Standard-Verfahren des maschinellen Lernens, aufbauend auf netzwerkanalytischen Strukturmerkmalen. Da die Daten, die für diese Untersuchung benötigt wurden, nicht frei erhältlich sind, haben die Forscher mit einem Testset echter Grunddaten gearbeitet. Die Aufteilung in Mitglieder und Nicht-Mitglieder sollte dabei mit einer möglichst großen Bandbreite von Methoden simuliert werden. Mit der Simulation war es zugleich möglich, die Untersuchungsergebnisse zu validieren. Mit handelsüblichen Computern konnte in nur wenigen Tagen berechnet werden, welche Nicht-Mitglieder mit großer Wahrscheinlichkeit miteinander befreundet sind.

Für die Heidelberger Wissenschaftler war dabei überraschend, dass alle Simulationsansätze qualitativ dasselbe Ergebnis brachten. „Unter realistischen Annahmen darüber, wieviel Prozent einer Bevölkerung Mitglied eines sozialen Netzwerkes sind und mit welcher Wahrscheinlichkeit diese ihr E-Mail-Adressbuch hochladen, hat sich gezeigt, dass es mit den Berechnungen möglich war, rund 40 Prozent richtige Vorhersagen über Bekanntschaften zwischen den Nicht-Mitgliedern zu treffen.“ Dies stellt nach Angaben von Dr. Michael Hanselmann vom HCI eine 20-fache Verbesserung gegenüber einfachem Raten dar.

„Unsere Untersuchung hat deutlich gemacht, welches Potenzial soziale Netzwerke besitzen, um Informationen über Nicht-Mitglieder abzuleiten. Die Resultate sind auch deshalb erstaunlich, weil sie auf reinen Kontaktdaten beruhen“, betont Prof. Hamprecht. Viele soziale Netzwerke und Dienstleister verfügen jedoch über weitaus mehr Informationen der Nutzer, etwa Alter, Einkommen, Ausbildung oder Wohnort. Mit der Verwendung solcher Angaben, einer entsprechenden technischen Infrastruktur und weiteren Strukturmerkmalen der Netzwerkanalyse ließe sich – so die Wissenschaftler – die Vorhersagegenauigkeit vermutlich noch deutlich steigern. „Insgesamt zeigt unser Projekt damit auf, dass wir als Gesellschaft eine Vereinbarung dafür finden müssen, inwieweit Informationen genutzt werden dürfen, zu denen es keine Freigabe der betroffenen Personen gibt“, sagt Prof. Zweig.

Die Forschungsergebnisse wurden in „PLoS ONE“ veröffentlicht.

Originalpublikation:
Horvát E-Á, Hanselmann M, Hamprecht FA, Zweig KA (2012): One Plus One Makes Three (for Social Networks). PLoS ONE 7(4): e34740. doi:10.1371/journal.pone.0034740

Kontakt:
Prof. Dr. Fred Hamprecht
Universität Heidelberg
Interdisziplinäres Zentrum für Wissenschaftliches Rechnen
Telefon (06221) 54-8800
fred.hamprecht@iwr.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Volle Konzentration am Steuer
25.11.2016 | Leibniz-Institut für Arbeitsforschung an der TU Dortmund

nachricht Warum Reibung von der Zahl der Schichten abhängt
24.11.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weiterbildung zu statistischen Methoden in der Versuchsplanung und -auswertung

06.12.2016 | Seminare Workshops

Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen

06.12.2016 | Förderungen Preise

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften