Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Signalverarbeitung mit Lichtfrequenzen

12.03.2014

In einem Übersichtsartikel in Nature Photonics diskutieren Ferenc Krausz und Mark Stockman experimentelle und theoretische Erkenntnisse, die eine lichtgesteuerte Informationstechnologie ermöglichen würden.

Licht könnte die heutige Elektronik um das 100.000fache beschleunigen. Diese Vision beschreiben Prof. Ferenc Krausz vom Labor für Attosekundenphysik (LAP) am Max-Planck-Institut für Quantenoptik und sein Kollege Prof. Mark Stockman von der Georgia State University (GSU) in Atlanta in einem Übersichtsartikel im Fachmagazin Nature Photonics (14. März 2014).


In Zukunft könnten Lichtwellen auf einen Chip treffen, mit dessen Hilfe dann wiederum Strom (grün) mit den Frequenzen der Lichtwellen geschaltet wird (bis zu Petahertz, also 1000 Billionen Schwingungen pro Sekunde). (Foto: Christian Hackenberger, MPQ, Abt. Attosekundenphysik)

In ihrem Szenario verwendet man die elektrischen Felder von Laser-Lichtwellen um den Fluss von Elektronen in Halbleitermaterialien zu kontrollieren. Das würde bedeuten, dass man künftig elektronische Schaltkreise mit Lichtfrequenzen schalten könnte. Sichtbares Licht schwingt rund eine Million Milliarden Mal pro Sekunde.

Ebenso schnell könnte die Signalverarbeitung werden. Da sowohl Elektronen als auch Licht Träger von Daten sind, könnte innovative optoelektronische Technologien die Geschwindigkeit der Informationsübermittlung erheblich beschleunigen. Das würde eine neue Ära in der Informationstechnologie einläuten.

Die Autoren erläutern in ihrem Artikel die neuen Techniken der Attosekundenphysik, die wahrscheinlich eine entscheidende Rolle bei der Umsetzung der lichtgesteuerten Signalverarbeitung einnehmen.

Licht könnte der Strom- und Datenschalter der Zukunft sein. Der Gedanke liegt nahe, denn die elektromagnetischen Felder des Lichts beeinflussen Elektronen. Elektronen sind der Stoff aus dem unser Strom besteht. Sie sind auch Träger von Daten und damit für die Informationstechnologie essentiell.

Könnte man die Elektronen mit Licht kontrollieren, würde das eine neue Ära in der Technik einläuten: die Lichtwellen-gesteuerte Elektronik. Mit ihr wären rund eine Million Milliarden Schaltvorgänge pro Sekunde denkbar. Denn etwa so oft schwingt eine Lichtwelle in einer Sekunde.

Voraussetzung, dass ein Strom- und Datenschalter aus Licht eines Tages Realität wird, ist eine perfekte Kontrolle über Lichtwellen, beschreiben Ferenc Krausz und sein Kollege. der amerikanische Festkörperphysiker Mark Stockman, ihre Gedanken und Visionen in Nature Photonics. Die Grundlage für diese Überlegungen bilden erste theoretische und experimentelle Untersuchungen, die gezeigt haben, dass das oszillierende elektrische Feld des Lichts elektrische Ströme kontrollieren kann (Nature, doi:10.1038/nature11567).

Diese Kontrolle bildet die technische Grundlage für die Attosekundenphysik, die erstmal die Echtzeitbeobachtung von atomaren Elektronenbewegungen mittels Attosekunden-langen Lichtblitzen ermöglicht hat. Eine Attosekunde dauert ein Milliardstel einer milliardstel Sekunde. Solche Attosekunden-Lichtblitze lassen sich nur wunschgemäß formen, wenn man die Lichtwellen der zu ihrer Produktion notwendigen Laserpulse perfekt steuern kann.

Krausz und Stockmann beschreiben in ihrem Artikel die Techniken, die dies erlaubten. Eine ausführlichere Geschichte der Attosekundenphysik ist in englischer Sprache auf der Homepage des Labors für Attosekundenphysik (http://www.attoworld.de/Mainpages/Attoworld/index.html#279) beschrieben.

Über eine erste Nutzung von Licht als Stromschalter berichtet ein Forscherteam um Prof. Krausz, Mark Stockman und Vadym Apalkov (GSU) in der gleichen Ausgabe von Nature Photonics. Der Strom, den das elektrische Feld eines ultrakurzen Lichtpulses in einem Isolator (Siliziumoxid) generiert, liefert direkte Information über die Wellenform des Lichtpulses (Nature Photonics, 14. März 2013, doi:10.1038/nphoton.2013.348). Dies ist ein erster Schritt in Richtung eines Detektors, der Lichtwellen sichtbar macht, ähnlich wie Oszillographen Mikrowellen darstellen.

Die Attosekundenphysik ist somit auf dem Weg, die Festkörper-Elektronik zumindest für die Messtechnik bis zu Lichtfrequenzen zu beschleunigen. Ob sich auch die Signalverarbeitung ähnlich beschleunigen lassen wird, ist heute noch völlig offen. „Unsere Vision ist ein Chip, mit dessen Hilfe wir Strom mit dem elektrischen Feld von Licht schalten können. Das würde bedeuten, dass man die heutige digitale Signalverarbeitung um den Faktor 100.000 beschleunigt. Schneller geht es nicht mehr“, erklärt Ferenc Krausz. Noch sind die Experimente Grundlagenforschung. Doch mit ihren Erkenntnissen haben die Wissenschaftler die Grenzen der heutigen Elektronik und Photonik ein Stück aufgeweicht. Der Weg hin zu einer lichtbasierten und damit weitaus schnelleren und leistungsfähigeren Elektronik scheint geebnet. Thorsten Naeser

Originalveröffentlichungen:

Ferenc Krausz und Mark I. Stockman
Attosecond metrology: from electron capture to future signal processing, Nature Photonics 14. März 2014, DOI: 10.1038/nphoton.2014.28

Tim Paasch-Colberg et al.
Solid-state light-phase detector, Nature Photonics 14. März 2014, DOI: 10.1038/nphoton.2013.348

Agustin Schiffrin et al.
Optical-field-induced current in dielectrics, Nature, 3. Januar 2012, DOI: 10.1038/nature11567

Martin Schultze et al.
Controlling dielectrics with the electric field of light, Nature, 3. Januar 2012, DOI: 10.1038/nature11720

Weitere Informationen erhalten Sie von:

Prof. Ferenc Krausz
Lehrstuhl für Experimentalphysik,
Ludwig-Maximilians-Universität München,
Labor für Attosekundenphysik
Direktor am Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 -600 / Fax: -649
E-Mail: ferenc.krausz@mpq.mpg.de

Thorsten Naeser
Munich-Centre for Advanced Photonics
Max-Planck-Institut für Quantenoptik, Garching
Telefon: +49 (0)89 / 32 905 - 124
E-Mail: thorsten.naeser@mpq.mpg.de

Dr. Olivia Meyer-Streng
Max-Planck-Institut für Quantenoptik, Garching Presse- und Öffentlichkeitsarbeit
Telefon: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Weitere Informationen:

http://www.attoworld.de/Mainpages/Attoworld/index.html#279

Dr. Olivia Meyer-Streng | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Mehrkernprozessoren für Mobilität und Industrie 4.0
07.12.2016 | Karlsruher Institut für Technologie

nachricht Wenn das Handy heimlich zuhört: Abwehr ungewollten Audiotrackings durch akustische Cookies
07.12.2016 | Fachhochschule St. Pölten

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Herz-Bindegewebe unter Strom

08.12.2016 | Biowissenschaften Chemie

Eine Extra-Sekunde zum neuen Jahr

08.12.2016 | Physik Astronomie

Wenn der Fluss krank ist – Fachseminar zu Gewässerökologie und Gewässerschutz

08.12.2016 | Seminare Workshops