Sichere Mensch-Roboter-Interaktion

Durch die multisensorielle Arbeitsraumüberwachung kann die Mitarbeiterin sicher mit dem Roboter interagieren. Foto: Manfred Zentsch © Fraunhofer IOSB

Beim Einsatz von Robotern in der Produktion wird nach heutigem Stand der Technik die Sicherheit durch eine strikte Trennung von Mensch und Roboter gewährleistet. Mit Hilfe von Zäunen, Lichtschranken und ähnlichen Sicherheitsvorkehrungen wird das Betreten des Aktionskreises des Roboters unterbunden oder erkannt und gegebenenfalls ein Nothalt ausgelöst. Diese Vorkehrungen verhindern jedoch die gemeinsame Nutzung von Arbeitsräumen durch Menschen und Roboter sowie eine enge physische Zusammenarbeit.

Wie kann der Mensch mit einem Roboter intuitiv und sicher interagieren?

Die Interaktion von Mensch und Roboter setzt eine multisensorielle Überwachung des Arbeitsbereichs voraus, denn nur dadurch kann Sicherheit von Menschen im Arbeitsraum des Roboters gewährleistet werden. Sie stellt eine Repräsentation der statischen und dynamischen Roboterumgebung zur Verfügung. Auf dieser Grundlage erkennt der Roboter mögliche Kollisionen z. B. mit Menschen und kann diese frühzeitig und sicher vermeiden.

Durch die Informationsfusion mehrerer Tiefensensoren können dynamische Hindernisse verfolgt und ihre Position und Geschwindigkeit geschätzt werden. Dies erlaubt die Prädiktion der Hindernisbewegung und eine frühzeitige Erkennung möglicher Kollisionen. Außerdem wird in der unmittelbaren Roboterumgebung eine 3D-Darstellung der Hindernisse berechnet. Diese berücksichtigt auch den durch die Hindernisse und den Roboter verdeckten Bereich, der für die Sensoren nicht einsehbar ist. So ist eine konservative Abschätzung des Abstands des Roboters zu den Hindernissen möglich.

Hierauf aufbauend können mit Hilfe von geeigneten Regelungs- und Planungsstrategien des Roboters Gefahrensituationen vermieden werden. Damit eine kollisionsfreie Bahn geplant werden kann, müssen sowohl eine Karte statischer Hindernisse, als auch die durch die Arbeitsraumüberwachung detektierten dynamischen Hindernisse berücksichtigt werden. Während der Roboterbewegung wird der Abstand des Roboters zu den Hindernissen fortlaufend überwacht. Falls der Roboter ein unerwartetes Hindernis registriert, wird durch Verlangsamen des Roboters oder die Anpassung der geplanten Bahn eine Kollision sicher vermieden.

Die Interaktion des Roboters mit seiner Umgebung umfasst sowohl die Kommunikation zwischen Mensch und Roboter, als auch die physische Interaktion des Roboters mit Gegenständen (z. B. Werkzeugen) und Menschen. Eine intuitive Kommunikation zwischen Mensch und Roboter erfolgt durch Gesten des Menschen. Der Mensch kann z. B. auf ein Objekt zeigen, das ihm der Roboter bringen soll. Diese Gesten erkennt der Roboter mit Hilfe einer Tiefenkamera, die am Arbeitsplatz montiert ist.

Um eine physische Interaktion des Roboters mit Menschen zu ermöglichen, z. B. bei der Übergabe von Werkzeugen oder Bauteilen, werden die bei der Interaktion entstehenden Kräfte gemessen. Diese Kräfte werden beispielsweise verwendet, um den Zeitpunkt des Loslassens eines Gegenstands bei der Übergabe zu steuern. Auch die Interaktion des Roboters mit Gegenständen erfordert eine Anpassung an die aktuelle Situation. So ist beispielsweise die genaue Lage zu greifender Objekte im Allgemeinen nicht bekannt. Daher wird der Roboter mit einer zusätzlichen Tiefenkamera am Greifer ausgestattet, mit deren Hilfe die Objektgröße und –lage geschätzt werden kann.

Durch die Integration der Arbeitsraumüberwachungs-, Planungs-, Interaktions- und Gestenerkennungskomponenten konnte die Zusammenarbeit eines mobilen Manipulators mit einem Menschen gezeigt werden. Hierbei greift der Roboter die vom einem Arbeiter benötigten Werkzeuge von einem Tisch, transportiert sie zum Arbeitsplatz des Arbeiters und übergibt sie ihm dort.

http://www.iosb.fraunhofer.de/servlet/is/61579/

Media Contact

B.A.-Journalistin Angelika Linos Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB

Alle Nachrichten aus der Kategorie: Informationstechnologie

Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.

Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer