Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Roboter mit Insektenhirn

03.02.2014
Berliner Forscher entwickeln einen Roboter, der lernen kann sich anhand von Außenreizen in seiner Umgebung zurechtzufinden. Sein Vorbild: das Insektenhirn.

Roboter, die selbständig ihren Weg durch unbekanntes Terrain finden? Nicht mehr ganz so ferne Zukunftsmusik.


Der Roboter in der Arena. Die kleine Kamera nimmt die Objekte auf und leitet die Informationen per Funk an das neuronale Netzwerk. Dort werden sie verarbeitet und die Bewegungsrichtung kontrolliert.

Martin Paul Nawrot

Forscher am Bernstein Fokus Neuronale Grundlagen des Lernens, am Bernstein Zentrum Berlin und an der Freien Universität Berlin haben einen Roboter entwickelt, der Umgebungsreize wahrnehmen und lernen kann auf sie zu reagieren. Als Vorbild seines Funktionsprinzips diente den Wissenschaftlern das relativ einfach gestrickte Nervensystem von Honigbienen.

Dazu installierten sie eine Kamera auf ein kleines Roboterfahrzeug und schlossen es an einen Computer an. Das Computerprogramm bildete dabei vereinfacht das sensomotorische Netzwerk des Insektengehirns nach. Seine Eingangsdaten erhielt es von der Kamera, die – ähnlich einem Auge – visuelle Informationen aufnehmen und weiterleiten konnte. Das neuronale Netzwerk selbst trieb wiederum die Motoren der Roboterräder an – und konnte somit seine Bewegungsrichtung steuern.

Das Besondere an dem künstlichen Minigehirn ist, dass es nach einfachen Prinzipien lernen kann. „Der netzwerkgesteuerte Roboter ist fähig, bestimmte Außenreize mit Verhaltensregeln zu verknüpfen“, sagt Professor Martin Paul Nawrot, Leiter der Studie und Mitglied des Verbundsprojektes „Insect inspired robots: towards an understanding of memory in decision making“ im Bernstein Fokus. „Ähnlich wie Honigbienen lernen, bestimmte Blütenfarben mit schmackhaftem Nektar zu assoziieren, erlernt der Roboter, sich auf gewisse Farbobjekte hinzubewegen und andere zu meiden.“

In dem Lernexperiment setzten die Wissenschaftler den netzwerkgesteuerten Roboter in die Mitte einer kleinen Arena. An deren Wänden waren rote und blaue Objekte angebracht. Sobald der Roboter mit seiner Kamera ein Objekt mit der gewünschten Farbe – etwa Rot – anvisiert hatte, lösten die Wissenschaftler ein Lichtsignal aus. Dieses Signal aktivierte eine sogenannte „Belohnungs-Nervenzelle“ im künstlichen Netzwerk. Die Verarbeitung der roten Farbe mit der zeitgleichen Belohnung führte nun zu gezielten Veränderungen in dem Teil des Netzwerks, das die Kontrolle über die Roboterräder ausübte. Die Folge: „Sah“ der Roboter ein weiteres rotes Objekt, so bewegte er sich darauf zu. Blaue Gegenstände führten zu einem Rückzug. „Der Roboter löste seine Aufgabe, ein Objekt in der gewünschten Farbe zu suchen und anzufahren, innerhalb weniger Sekunden“, erklärt Nawrot. „Ähnlich wie in Experimenten wie Honigbienen reichte ein einziger Versuchsdurchgang zum Lernen aus.“

Die aktuelle Studie ist als interdisziplinäre Zusammenarbeit zwischen den Arbeitsgruppen „Neuroinformatik“ (Institut für Biologie) um Professor Martin Paul Nawrot und „Intelligente Systeme und Robotik“ (Institut für Informatik) um Professor Raúl Rojas an der Freien Universität Berlin entstanden. Die Wissenschaftler planen nun, das neuronale Netzwerk weiter auszubauen und um weitere Lernformen zu ergänzen. Dadurch wird das Minigehirn noch leistungsfähiger – und der Roboter noch selbstständiger.

Der Bernstein Fokus Neuronale Grundlagen des Lernen “ mit seinem Verbundprojekt „Insect inspired robots: towards an understanding of memory in decision making“ und das Bernstein Zentrum Berlin sind Teil des Nationalen Bernstein Netzwerks Computational Neuroscience. Seit 2004 fördert das Bundesministerium für Bildung und Forschung (BMBF) mit dieser Initiative die neue Forschungsdisziplin Computational Neuroscience mit mehr als 170 Milliionen Euro. Das Netzwerk ist benannt nach dem deutschen Physiologen Julius Bernstein (1835–1917).

Weitere Informationen erteilt Ihnen gerne:
Prof. Dr. Martin Paul Nawrot
Freie Universität Berlin
Institut für Biologie – Neurobiologie
Königin-Luise-Straße 1-3, Raum 201
14195 Berlin 

Tel: +49 (0)30 838 56692
E-Mail: martin.nawrot@fu-berlin.de
Originalpublikation:
L. I. Helgadóttir, J. Haenicke, T. Landgraf, R. Rojas & M. P. Nawrot (2013): Conditioned behavior in a robot controlled by a spiking neural network. 6th International IEEE/EMBS Conference on Neural Engineering (NER), 891 - 894

http://dx.doi.org/10.1109/NER.2013.6696078

Videomaterial:
http://www.youtube.com/watch?v=Qb_R_E4DPYs&feature=youtu.be
Weitere Informationen:
http://www.biologie.fu-berlin.de/neuroinformatik/
http://Arbeitsgruppe „Neuroinformatik“ von Martin Paul Nawrot
http://www.inf.fu-berlin.de/inst/ag-ki/rojas_home/pmwiki/pmwiki.php
http://Arbeitsgruppe „Intelligente Systeme und Robotik“ von Raúl Rojas
https://www.bccn-berlin.de Bernstein Zentrum Berlin
http://www.fu-berlin.de Freie Universität Berlin
http://www.nncn.de Nationales Bernstein Netzwerk Computational Neuroscience

Mareike Kardinal | idw
Weitere Informationen:
http://www.nncn.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Warnsystem KATWARN startet international vernetzten Betrieb
27.06.2017 | FOKUS - Fraunhofer-Institut für Offene Kommunikationssysteme

nachricht Überschwemmungen genau in den Blick nehmen
27.06.2017 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie