Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Roboter auf Reisen – DFKI-Wissenschaftler simulieren Weltraummission in marsähnlicher Wüste Utahs

17.08.2016

Eine karge, felsige Wüstenlandschaft und keine Menschenseele weit und breit – um den unwirtlichen Bedingungen auf dem Roten Planeten möglichst nahe zu kommen, testen Wissenschaftler des Robotics Innovation Center des Deutschen Forschungszentrums für Künstliche Intelligenz (DFKI) vom 24. Oktober bis 18. November 2016 die Kooperation verschiedener Robotersysteme in der Halbwüste des amerikanischen Bundesstaates Utah. Die Roboter SherpaTT und Coyote III aus dem Transferprojekt TransTerrA gehen dafür bereits Anfang September auf Reisen.

Die Erkenntnis, dass sich Utahs Halbwüste besonders gut als Testareal für Marsmissionen eignet, ist nicht neu: seit 2011 betreibt die Mars Society im Süden des Bundesstaates nahe der Kleinstadt Hanksville die Mars Desert Research Station, eine Forschungsstation mit Weltraum-Habitat, in der regelmäßig bemannte Marsaufenthalte simuliert werden.


Die am Weltraumszenario beteiligten mobilen Systeme SherpaTT (links), Coyote III (hinten im Krater) und die Basistation mit aufgestecktem Nutzlastmodul (rechts)

DFKI GmbH, Foto: Florian Cordes


Die abgelegene, felsige Wüstenlandschaft in Utah bietet optimale Bedingungen für Marssimulationen

DFKI GmbH, Foto: Florian Cordes

Etwas nördlich davon stellen die DFKI-Wissenschaftler verschiedene Robotersysteme im Rahmen einer vierwöchigen, vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) in dem Projekt FT-Utah (Field Trials Utah) geförderten Feldtestkampagne auf die Probe.

Die Systeme sind Teil des laufenden Vorhabens TransTerrA, das auf die Entwicklung von Raumfahrttechnologien und deren Transfer in irdische Anwendungen zielt. Dazu gehört auch die Durchführung einer Weltraummission, in der Roboter im Team autonom komplexe Aufgaben erfüllen. Die Feldtests in Utah bieten den Wissenschaftlern erstmalig die Gelegenheit, die Missionsabläufe in einer natürlichen, realitätsnahen Umgebung zu testen.

Sicher in einem Schiffscontainer verstaut, treten zwei DFKI-Roboter die Reise über den Atlantik an: zum einen der Schreit-Fahrrover SherpaTT, der – dank seines aktiven Fahrwerks – selbst schwieriges Gelände gekonnt überwinden und zugleich größere Nutzlasten, wie zusätzliche Sensorik, Akkus oder Werkzeuge, transportieren kann. Unterschiedliche Sensoren lassen ihn seine Umgebung autonom erkunden, und ein Roboterarm ermöglicht es ihm, Objekte vielfältig zu manipulieren.

Zusätzlich ist der Rover mit mehreren elektro-mechanischen Schnittstellen ausgestattet, mittels derer er sich an unterschiedliche Missionsszenarien anpassen kann. Der zweite Roboter ist ein Mikro-Rover namens Coyote III, der sich mithilfe einer Sternradkonstruktion besonders schnell in unwegsamem Gelände fortbewegt. Auch er ist mit Sensoren für die autonome Exploration und zusätzlichen Schnittstellen ausgerüstet, die zum Beispiel das Andocken von Manipulatoren und weiteren Nutzlastmodulen ermöglichen.

Der Schwerpunkt der Feldtestkampagne in Utah liegt auf der Simulation einer sogenannten Sample-Return-Mission, bei der Bodenproben der Marsoberfläche für Analysezwecke zur Erde zurückgebracht werden. Dafür errichten die beiden Rover unter Verwendung einer Basisstation, die dem Aufladen ihrer Batterien und der Datenübertragung dient, sowie zusätzlicher Nutzlastmodule eine logistische Kette.

Die Aufgabe von SherpaTT ist es, die Umgebung umfassend zu erkunden und durch den Einsatz seines Manipulatorarms Bodenproben zu entnehmen. Der kleinere Coyote III übernimmt die Rolle eines Shuttles, das die entnommenen Proben einsammelt und zur Landestation transportiert.

Zur selben Zeit in Bremen: die Kontrolle des Missionsablaufs erfolgt phasenweise ferngesteuert per Satellitenlink durch eine am Robotics Innovation Center errichtete Kontrollstation. Von hier aus kann ein menschlicher Operator mithilfe eines tragbaren Oberkörper-Exoskeletts in die viele tausend Kilometer entfernt durchgeführte Mission eingreifen und die Roboter direkt steuern.

Zurück in Deutschland fließen die Ergebnisse der Feldtestkampagne in das Vorhaben TransTerrA ein. Eine weitere Frage lautet in diesem Zusammenhang, wie sich die für Weltraummissionen entwickelten Systeme und Technologien auf irdische Anwendungen übertragen lassen. Denn Roboter, die selbstständig Aufgaben unter den harschen Bedingungen fremder Planeten durchführen können, eignen sich auch für den Einsatz in menschenfeindlichen Umgebungen auf der Erde, etwa in der Tiefsee oder in nach Industrieunfällen kontaminierten Gebieten.

Das Projekt FT-Utah wird von der Raumfahrt-Agentur des Deutschen Zentrums für Luft- und Raumfahrt e.V. (DLR) mit Mitteln des Bundesministeriums für Wirtschaft und Energie (BMWi) aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Kontakt:
Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI) GmbH
Robotics Innovation Center
Prof. Dr. Frank Kirchner
Technisch-wissenschaftlicher Verantwortlicher
E-Mail: Frank.Kirchner@dfki.de
Telefon: 0421 178 45 4100

Pressekontakt:
Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI) GmbH
Unternehmenskommunikation Bremen
E-Mail: uk-hb@dfki.de
Telefon: 0421 178 45 4121

Weitere Informationen:

http://dfki.de/robotik/de/forschung/projekte/ft-utah.html

Franziska Martin | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Datenbrille erleichtert Gehörlosen die Arbeit in der Lagerlogistik
23.02.2018 | Technische Universität München

nachricht Verlässliche Quantencomputer entwickeln
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics