Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rechnen im Netz der Möglichkeiten

08.08.2012
Der complex network computer verarbeitet Information nach einem völlig neuen Prinzip – und könnte heutigen Rechnern eines Tages Konkurrenz machen.

Ein völlig neues Prinzip Information zu verarbeiten haben Wissenschaftler des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS) in Göttingen entwickelt. Der complex network computer stellt somit eine Alternative zu anderen Möglichkeiten der Datenverarbeitung dar – wie etwa dem konventionellen Computer oder dem Quantencomputer.


In Systemen gekoppelter schwingender Elemente bilden die Sattelpunkte eine Art Netzwerk. Die abgebildeten Netze gehören zu einem System aus fünf Elementen. Die Sattelpunkte sind als Punkte dargestellt. Jeder Sattelpunkt ist mit vier anderen verbunden. Zwei dieser Verbindungen führen zum jeweiligen Sattelpunkt, zwei von ihm weg. Eine Rechnung beginnt an einem Sattelpunkt. Die Störung, die diesen Sattelpunkt-Zustand destabilisiert, entspricht dem Eingangssignal der Rechenoperation. Je nach Art des Eingangssignals sucht sich das System verschiedene Wege durch das Netz der Sattelpunkte. Zwei der möglichen Wege, von denen jeder dem Ergebnis einer Rechnung entspricht, sind in dem Bild orange und blau dargestellt. Grafik: MPIDS

Voraussetzung ist ein System schwingender Elemente wie etwa Laser, die mit einander wechselwirken können. Die Forscher konnten zeigen, dass sich die charakteristische Dynamik eines solchen Systems geschickt nutzen lässt, um sämtliche logische Operationen auszuführen. Einige Aufgaben wie etwa das grobe Sortieren von Zahlen löst der complex network computer sogar deutlich schneller als der konventionelle. In einem ersten Schritt konnten die Forscher zudem einen Roboter nach dem neuen Prinzip programmieren.

Ein Computer ist weit mehr als reine Hardware. Völlig losgelöst von dieser ist er vor allem ein Prinzip, wie sich Daten und Information verarbeiten lassen. Im Fall des konventionellen Computers, der längst unseren Alltag bestimmt, liegt die Essenz somit nicht in Transistoren, Chips und Halbleitern versteckt. Vielmehr zeichnet er sich durch die Art und Weise aus, wie sich mit Hilfe zweier leicht unterscheidbarer Zustände (gemeinhin 0 und 1 genannt) Rechenoperationen ausführen lassen.

Ein völlig anderes Prinzip Information zu verarbeiten, haben nun Wissenschaftler vom Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS) entwickelt. Ihr so genannter complex network computer ist ebenfalls in der Lage, Rechenoperationen vorzunehmen, tut dies aber unter völlig anderen Bedingungen.

„Völlig anders als bei der klassischen Informationsverarbeitung auf dem PC beruht unser neues Konzept nicht auf einem binären System aus Nullen und Einsen“, erklärt Prof. Dr. Marc Timme, Leiter der Forschungsgruppe Netzwerk-Dynamik am MPIDS. Als Grundbausteine des complex network computer sind zudem prinzipiell alle Systeme denkbar, die schwingen können. „Das einfachste Beispiel ist ein Pendel“, so Timme. Doch auch bestimmte Stromkreise, deren Bauteile die elektrische Ladung rhythmisch unter einander austauschen, oder Laser können in übertragenem Sinne schwingen. Stehen mehrerer solcher Grundbausteine miteinander in Verbindung – wie etwa mehrere Pendel, die über eine Feder miteinander gekoppelt sind – zeigen sie ein spezielles dynamisches Verhalten, das sich geschickt zum Verarbeiten von Daten nutzen lässt.

Schlüssel zu diesem Verhalten sind so genannte Sattelpunkte. Gemeint sind Zustände des Gesamtsystems die in mancher Hinsicht stabil, in anderer instabil sind. „Man denke sich etwa eine Kugel, die in der Mulde eines tatsächlichen Sattels ruht“, erklärt Timme. Lenkt man diese Kugel exakt parallel zum Pferderücken aus, rollt sie zuverlässig in die Mulde zurück. Der Ausgangszustand ist gegenüber dieser Art von Störung stabil. Wird die Kugel jedoch senkrecht zum Pferderücken angestoßen, zeigt sich ein völlig anderes Bild: Die Kugel fällt herunter; der Zustand ist instabil. Im Fall gekoppelter Pendel entspricht eine bestimmte Choreographie der Schwingungen, bei der sich bestimmte Pendel synchron bewegen, einem solchem Sattelpunkt-Zustand.

Allgemein bilden in Systemen gekoppelter schwingender Elemente solche Sattelpunkt-Zustände eine Art Netzwerk: Als Reaktion auf eine äußere Störung, die einen bestimmten Sattelpunkt-Zustand destabilisiert, geht das Gesamtsystem in einen anderen Sattelpunkt-Zustand über. „In unserem Beispielsystem führt jeder Sattelpunkt so zu zwei weiteren, die wiederum mit zwei weiteren Zuständen verbunden sind“, beschreibt Dr. Fabio Schittler Neves vom MPIDS. Welchen Weg sich das System in diesem Netz möglicher Zustände tatsächlich bahnt, hängt von der Art der Störung ab.

„In unserem Konzept fassen wir jede Störung als Eingangssignal auf, das aus mehreren Teilsignalen zusammengesetzt sein kann“, so Schittler Neves. Jedes Teilsignal spricht eines der schwingenden Elemente des Gesamtsystems an. Im Fall einer Gruppe gekoppelter Pendel etwa entspricht ein Teilsignal somit einem kleinen Schubs, den ein einzelnes Pendel erhält. Das Verhältnis der Stärken dieser Teilsignale gibt dann den Ausschlag, welchem neuen Sattelpunkt-Zustand das System zustrebt.

Das Eingangssignal bestimmt somit einen ausgesuchten Weg durch das Netzwerk der Sattelpunkte. Der eingeschlagene Pfad entspricht dem Ergebnis der Rechnung. „Der Zustand, den das System so annimmt, erlaubt Rückschlüsse auf das Größenverhältnis der einzelnen Teilsignale“, erläutert Timme. „Es ist eine Art Sortieren nach Größe.“

In ihrer jüngsten Veröffentlichung konnten die Forscher nun zeigen, dass sich auf dieser Fähigkeit eine komplette Logik aufbauen lässt: Alle logischen Operationen – wie etwa Addition, Multiplikation und Verneinung – lassen sich so darstellen. Doch während beim klassischen Computer ein Bauteil – also ein Teilsystem des gesamten Computers – eine bestimmte logische Operation wie beispielsweise eine Addition ausführt, findet im Fall des complex network computer die Operation gleichzeitig im gesamten Netzwerk statt.

„Alle logischen Operationen lassen sich deswegen in diesem Netzwerk gleichermaßen ausführen“, so Timme.

Dadurch können bereits relativ kleine Systeme eine unglaublich große Vielzahl möglicher Operationen ausführen: Während mit fünf schwingenden Elementen lediglich zehn verschiedene Systemzustände erreicht und somit zehn verschiedene Rechnungen ausgeführt werden können, ergeben sich für 100 Elemente bereits 5 x 10^20. Diese Anzahl entspricht dem 10000-fachen aller Buchstaben in allen Büchern in allen Bibliotheken der Welt. Zudem löst der complex network computer einige Aufgaben wie etwa das grobe Sortieren von Zahlen deutlich schneller als sein konvetionelles Gegenstück.

In einer ersten Anwendung hat sich das neue Rechenprinzip bereits bewährt. So konnten die Wissenschaftler einen einfachen Roboter konstruieren, der sich selbst den Weg durch einen Hindernisparcour sucht. Die Eingangssignale seiner Sensoren entsprechen dabei den Störungen des Systems. „Als Hardware könnten in diesem Fall elektrische Schwingkreise dienen“, erklärt Schittler Neves. „In unserer allerersten Anwendung haben wir mit einem herkömmlichen Computer ein solches System elektrischer Schwingkreise zunächst simuliert, um den Roboter zu steuern“, ergänzt er. An einer konkreten Umsetzung in elektronischer Hardware arbeiten die Wissenschaftler gerade.

„Von einem leistungsfähigen Computer im eigentlichen Sinne sind wir zwar noch weit entfernt“, so Timme. „Doch wir konnten zeigen, dass die Idee grundsätzlich funktioniert“, ergänzt er. Der aktuelle Stand ist somit vergleichbar mit dem des Quantencomputers. Wie sich mit Hilfe von Quantenalgorithmen rechnen lässt, wird in der Theorie immer weiter aufgeklärt. Doch ob etwa Halbleiterstrukturen, Supraleiter, Anordnungen einzelner Atome oder völlig andere physikalische Systeme als Hardware in Frage kommen, ist noch immer Gegenstand der Forschung.

„Gekoppelte Pendel werden es im Falle des complex network computer wohl eher nicht sein“, schmunzelt Timme. Da für ein effizientes Rechnen viele tausende solcher gekoppelter Pendel gebraucht würden, eignet sich das System eher zur Veranschaulichung. Größere Hoffnungen setzen die Forscher in Systeme gekoppelter Laser. Diese weisen nicht nur genau abgestimmte Frequenzen auf, die eine weitere Voraussetzung für complex network computer sind, sondern zeichnen sich auch durch besonders hohe Frequenzen von bis zu einigen Milliarden Schwingungen pro Sekunde aus, mit denen ein Computer besonders schnell rechnen könnte.

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.ds.mpg.de/

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Schnelle Time-to-Market durch standardisierte Datacenter-Container
28.03.2017 | Rittal GmbH & Co. KG

nachricht Modellfabrik Industrie 4.0: Forschungs- und Trainingsplattform für Wissenschaft und Wirtschaft
28.03.2017 | Hochschule Konstanz

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit