Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rechnen im Netz der Möglichkeiten

08.08.2012
Der complex network computer verarbeitet Information nach einem völlig neuen Prinzip – und könnte heutigen Rechnern eines Tages Konkurrenz machen.

Ein völlig neues Prinzip Information zu verarbeiten haben Wissenschaftler des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS) in Göttingen entwickelt. Der complex network computer stellt somit eine Alternative zu anderen Möglichkeiten der Datenverarbeitung dar – wie etwa dem konventionellen Computer oder dem Quantencomputer.


In Systemen gekoppelter schwingender Elemente bilden die Sattelpunkte eine Art Netzwerk. Die abgebildeten Netze gehören zu einem System aus fünf Elementen. Die Sattelpunkte sind als Punkte dargestellt. Jeder Sattelpunkt ist mit vier anderen verbunden. Zwei dieser Verbindungen führen zum jeweiligen Sattelpunkt, zwei von ihm weg. Eine Rechnung beginnt an einem Sattelpunkt. Die Störung, die diesen Sattelpunkt-Zustand destabilisiert, entspricht dem Eingangssignal der Rechenoperation. Je nach Art des Eingangssignals sucht sich das System verschiedene Wege durch das Netz der Sattelpunkte. Zwei der möglichen Wege, von denen jeder dem Ergebnis einer Rechnung entspricht, sind in dem Bild orange und blau dargestellt. Grafik: MPIDS

Voraussetzung ist ein System schwingender Elemente wie etwa Laser, die mit einander wechselwirken können. Die Forscher konnten zeigen, dass sich die charakteristische Dynamik eines solchen Systems geschickt nutzen lässt, um sämtliche logische Operationen auszuführen. Einige Aufgaben wie etwa das grobe Sortieren von Zahlen löst der complex network computer sogar deutlich schneller als der konventionelle. In einem ersten Schritt konnten die Forscher zudem einen Roboter nach dem neuen Prinzip programmieren.

Ein Computer ist weit mehr als reine Hardware. Völlig losgelöst von dieser ist er vor allem ein Prinzip, wie sich Daten und Information verarbeiten lassen. Im Fall des konventionellen Computers, der längst unseren Alltag bestimmt, liegt die Essenz somit nicht in Transistoren, Chips und Halbleitern versteckt. Vielmehr zeichnet er sich durch die Art und Weise aus, wie sich mit Hilfe zweier leicht unterscheidbarer Zustände (gemeinhin 0 und 1 genannt) Rechenoperationen ausführen lassen.

Ein völlig anderes Prinzip Information zu verarbeiten, haben nun Wissenschaftler vom Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS) entwickelt. Ihr so genannter complex network computer ist ebenfalls in der Lage, Rechenoperationen vorzunehmen, tut dies aber unter völlig anderen Bedingungen.

„Völlig anders als bei der klassischen Informationsverarbeitung auf dem PC beruht unser neues Konzept nicht auf einem binären System aus Nullen und Einsen“, erklärt Prof. Dr. Marc Timme, Leiter der Forschungsgruppe Netzwerk-Dynamik am MPIDS. Als Grundbausteine des complex network computer sind zudem prinzipiell alle Systeme denkbar, die schwingen können. „Das einfachste Beispiel ist ein Pendel“, so Timme. Doch auch bestimmte Stromkreise, deren Bauteile die elektrische Ladung rhythmisch unter einander austauschen, oder Laser können in übertragenem Sinne schwingen. Stehen mehrerer solcher Grundbausteine miteinander in Verbindung – wie etwa mehrere Pendel, die über eine Feder miteinander gekoppelt sind – zeigen sie ein spezielles dynamisches Verhalten, das sich geschickt zum Verarbeiten von Daten nutzen lässt.

Schlüssel zu diesem Verhalten sind so genannte Sattelpunkte. Gemeint sind Zustände des Gesamtsystems die in mancher Hinsicht stabil, in anderer instabil sind. „Man denke sich etwa eine Kugel, die in der Mulde eines tatsächlichen Sattels ruht“, erklärt Timme. Lenkt man diese Kugel exakt parallel zum Pferderücken aus, rollt sie zuverlässig in die Mulde zurück. Der Ausgangszustand ist gegenüber dieser Art von Störung stabil. Wird die Kugel jedoch senkrecht zum Pferderücken angestoßen, zeigt sich ein völlig anderes Bild: Die Kugel fällt herunter; der Zustand ist instabil. Im Fall gekoppelter Pendel entspricht eine bestimmte Choreographie der Schwingungen, bei der sich bestimmte Pendel synchron bewegen, einem solchem Sattelpunkt-Zustand.

Allgemein bilden in Systemen gekoppelter schwingender Elemente solche Sattelpunkt-Zustände eine Art Netzwerk: Als Reaktion auf eine äußere Störung, die einen bestimmten Sattelpunkt-Zustand destabilisiert, geht das Gesamtsystem in einen anderen Sattelpunkt-Zustand über. „In unserem Beispielsystem führt jeder Sattelpunkt so zu zwei weiteren, die wiederum mit zwei weiteren Zuständen verbunden sind“, beschreibt Dr. Fabio Schittler Neves vom MPIDS. Welchen Weg sich das System in diesem Netz möglicher Zustände tatsächlich bahnt, hängt von der Art der Störung ab.

„In unserem Konzept fassen wir jede Störung als Eingangssignal auf, das aus mehreren Teilsignalen zusammengesetzt sein kann“, so Schittler Neves. Jedes Teilsignal spricht eines der schwingenden Elemente des Gesamtsystems an. Im Fall einer Gruppe gekoppelter Pendel etwa entspricht ein Teilsignal somit einem kleinen Schubs, den ein einzelnes Pendel erhält. Das Verhältnis der Stärken dieser Teilsignale gibt dann den Ausschlag, welchem neuen Sattelpunkt-Zustand das System zustrebt.

Das Eingangssignal bestimmt somit einen ausgesuchten Weg durch das Netzwerk der Sattelpunkte. Der eingeschlagene Pfad entspricht dem Ergebnis der Rechnung. „Der Zustand, den das System so annimmt, erlaubt Rückschlüsse auf das Größenverhältnis der einzelnen Teilsignale“, erläutert Timme. „Es ist eine Art Sortieren nach Größe.“

In ihrer jüngsten Veröffentlichung konnten die Forscher nun zeigen, dass sich auf dieser Fähigkeit eine komplette Logik aufbauen lässt: Alle logischen Operationen – wie etwa Addition, Multiplikation und Verneinung – lassen sich so darstellen. Doch während beim klassischen Computer ein Bauteil – also ein Teilsystem des gesamten Computers – eine bestimmte logische Operation wie beispielsweise eine Addition ausführt, findet im Fall des complex network computer die Operation gleichzeitig im gesamten Netzwerk statt.

„Alle logischen Operationen lassen sich deswegen in diesem Netzwerk gleichermaßen ausführen“, so Timme.

Dadurch können bereits relativ kleine Systeme eine unglaublich große Vielzahl möglicher Operationen ausführen: Während mit fünf schwingenden Elementen lediglich zehn verschiedene Systemzustände erreicht und somit zehn verschiedene Rechnungen ausgeführt werden können, ergeben sich für 100 Elemente bereits 5 x 10^20. Diese Anzahl entspricht dem 10000-fachen aller Buchstaben in allen Büchern in allen Bibliotheken der Welt. Zudem löst der complex network computer einige Aufgaben wie etwa das grobe Sortieren von Zahlen deutlich schneller als sein konvetionelles Gegenstück.

In einer ersten Anwendung hat sich das neue Rechenprinzip bereits bewährt. So konnten die Wissenschaftler einen einfachen Roboter konstruieren, der sich selbst den Weg durch einen Hindernisparcour sucht. Die Eingangssignale seiner Sensoren entsprechen dabei den Störungen des Systems. „Als Hardware könnten in diesem Fall elektrische Schwingkreise dienen“, erklärt Schittler Neves. „In unserer allerersten Anwendung haben wir mit einem herkömmlichen Computer ein solches System elektrischer Schwingkreise zunächst simuliert, um den Roboter zu steuern“, ergänzt er. An einer konkreten Umsetzung in elektronischer Hardware arbeiten die Wissenschaftler gerade.

„Von einem leistungsfähigen Computer im eigentlichen Sinne sind wir zwar noch weit entfernt“, so Timme. „Doch wir konnten zeigen, dass die Idee grundsätzlich funktioniert“, ergänzt er. Der aktuelle Stand ist somit vergleichbar mit dem des Quantencomputers. Wie sich mit Hilfe von Quantenalgorithmen rechnen lässt, wird in der Theorie immer weiter aufgeklärt. Doch ob etwa Halbleiterstrukturen, Supraleiter, Anordnungen einzelner Atome oder völlig andere physikalische Systeme als Hardware in Frage kommen, ist noch immer Gegenstand der Forschung.

„Gekoppelte Pendel werden es im Falle des complex network computer wohl eher nicht sein“, schmunzelt Timme. Da für ein effizientes Rechnen viele tausende solcher gekoppelter Pendel gebraucht würden, eignet sich das System eher zur Veranschaulichung. Größere Hoffnungen setzen die Forscher in Systeme gekoppelter Laser. Diese weisen nicht nur genau abgestimmte Frequenzen auf, die eine weitere Voraussetzung für complex network computer sind, sondern zeichnen sich auch durch besonders hohe Frequenzen von bis zu einigen Milliarden Schwingungen pro Sekunde aus, mit denen ein Computer besonders schnell rechnen könnte.

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.ds.mpg.de/

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Volle Konzentration am Steuer
25.11.2016 | Leibniz-Institut für Arbeitsforschung an der TU Dortmund

nachricht Warum Reibung von der Zahl der Schichten abhängt
24.11.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weiterbildung zu statistischen Methoden in der Versuchsplanung und -auswertung

06.12.2016 | Seminare Workshops

Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen

06.12.2016 | Förderungen Preise

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften