Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rechnen im Netz der Möglichkeiten

08.08.2012
Der complex network computer verarbeitet Information nach einem völlig neuen Prinzip – und könnte heutigen Rechnern eines Tages Konkurrenz machen.

Ein völlig neues Prinzip Information zu verarbeiten haben Wissenschaftler des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS) in Göttingen entwickelt. Der complex network computer stellt somit eine Alternative zu anderen Möglichkeiten der Datenverarbeitung dar – wie etwa dem konventionellen Computer oder dem Quantencomputer.


In Systemen gekoppelter schwingender Elemente bilden die Sattelpunkte eine Art Netzwerk. Die abgebildeten Netze gehören zu einem System aus fünf Elementen. Die Sattelpunkte sind als Punkte dargestellt. Jeder Sattelpunkt ist mit vier anderen verbunden. Zwei dieser Verbindungen führen zum jeweiligen Sattelpunkt, zwei von ihm weg. Eine Rechnung beginnt an einem Sattelpunkt. Die Störung, die diesen Sattelpunkt-Zustand destabilisiert, entspricht dem Eingangssignal der Rechenoperation. Je nach Art des Eingangssignals sucht sich das System verschiedene Wege durch das Netz der Sattelpunkte. Zwei der möglichen Wege, von denen jeder dem Ergebnis einer Rechnung entspricht, sind in dem Bild orange und blau dargestellt. Grafik: MPIDS

Voraussetzung ist ein System schwingender Elemente wie etwa Laser, die mit einander wechselwirken können. Die Forscher konnten zeigen, dass sich die charakteristische Dynamik eines solchen Systems geschickt nutzen lässt, um sämtliche logische Operationen auszuführen. Einige Aufgaben wie etwa das grobe Sortieren von Zahlen löst der complex network computer sogar deutlich schneller als der konventionelle. In einem ersten Schritt konnten die Forscher zudem einen Roboter nach dem neuen Prinzip programmieren.

Ein Computer ist weit mehr als reine Hardware. Völlig losgelöst von dieser ist er vor allem ein Prinzip, wie sich Daten und Information verarbeiten lassen. Im Fall des konventionellen Computers, der längst unseren Alltag bestimmt, liegt die Essenz somit nicht in Transistoren, Chips und Halbleitern versteckt. Vielmehr zeichnet er sich durch die Art und Weise aus, wie sich mit Hilfe zweier leicht unterscheidbarer Zustände (gemeinhin 0 und 1 genannt) Rechenoperationen ausführen lassen.

Ein völlig anderes Prinzip Information zu verarbeiten, haben nun Wissenschaftler vom Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS) entwickelt. Ihr so genannter complex network computer ist ebenfalls in der Lage, Rechenoperationen vorzunehmen, tut dies aber unter völlig anderen Bedingungen.

„Völlig anders als bei der klassischen Informationsverarbeitung auf dem PC beruht unser neues Konzept nicht auf einem binären System aus Nullen und Einsen“, erklärt Prof. Dr. Marc Timme, Leiter der Forschungsgruppe Netzwerk-Dynamik am MPIDS. Als Grundbausteine des complex network computer sind zudem prinzipiell alle Systeme denkbar, die schwingen können. „Das einfachste Beispiel ist ein Pendel“, so Timme. Doch auch bestimmte Stromkreise, deren Bauteile die elektrische Ladung rhythmisch unter einander austauschen, oder Laser können in übertragenem Sinne schwingen. Stehen mehrerer solcher Grundbausteine miteinander in Verbindung – wie etwa mehrere Pendel, die über eine Feder miteinander gekoppelt sind – zeigen sie ein spezielles dynamisches Verhalten, das sich geschickt zum Verarbeiten von Daten nutzen lässt.

Schlüssel zu diesem Verhalten sind so genannte Sattelpunkte. Gemeint sind Zustände des Gesamtsystems die in mancher Hinsicht stabil, in anderer instabil sind. „Man denke sich etwa eine Kugel, die in der Mulde eines tatsächlichen Sattels ruht“, erklärt Timme. Lenkt man diese Kugel exakt parallel zum Pferderücken aus, rollt sie zuverlässig in die Mulde zurück. Der Ausgangszustand ist gegenüber dieser Art von Störung stabil. Wird die Kugel jedoch senkrecht zum Pferderücken angestoßen, zeigt sich ein völlig anderes Bild: Die Kugel fällt herunter; der Zustand ist instabil. Im Fall gekoppelter Pendel entspricht eine bestimmte Choreographie der Schwingungen, bei der sich bestimmte Pendel synchron bewegen, einem solchem Sattelpunkt-Zustand.

Allgemein bilden in Systemen gekoppelter schwingender Elemente solche Sattelpunkt-Zustände eine Art Netzwerk: Als Reaktion auf eine äußere Störung, die einen bestimmten Sattelpunkt-Zustand destabilisiert, geht das Gesamtsystem in einen anderen Sattelpunkt-Zustand über. „In unserem Beispielsystem führt jeder Sattelpunkt so zu zwei weiteren, die wiederum mit zwei weiteren Zuständen verbunden sind“, beschreibt Dr. Fabio Schittler Neves vom MPIDS. Welchen Weg sich das System in diesem Netz möglicher Zustände tatsächlich bahnt, hängt von der Art der Störung ab.

„In unserem Konzept fassen wir jede Störung als Eingangssignal auf, das aus mehreren Teilsignalen zusammengesetzt sein kann“, so Schittler Neves. Jedes Teilsignal spricht eines der schwingenden Elemente des Gesamtsystems an. Im Fall einer Gruppe gekoppelter Pendel etwa entspricht ein Teilsignal somit einem kleinen Schubs, den ein einzelnes Pendel erhält. Das Verhältnis der Stärken dieser Teilsignale gibt dann den Ausschlag, welchem neuen Sattelpunkt-Zustand das System zustrebt.

Das Eingangssignal bestimmt somit einen ausgesuchten Weg durch das Netzwerk der Sattelpunkte. Der eingeschlagene Pfad entspricht dem Ergebnis der Rechnung. „Der Zustand, den das System so annimmt, erlaubt Rückschlüsse auf das Größenverhältnis der einzelnen Teilsignale“, erläutert Timme. „Es ist eine Art Sortieren nach Größe.“

In ihrer jüngsten Veröffentlichung konnten die Forscher nun zeigen, dass sich auf dieser Fähigkeit eine komplette Logik aufbauen lässt: Alle logischen Operationen – wie etwa Addition, Multiplikation und Verneinung – lassen sich so darstellen. Doch während beim klassischen Computer ein Bauteil – also ein Teilsystem des gesamten Computers – eine bestimmte logische Operation wie beispielsweise eine Addition ausführt, findet im Fall des complex network computer die Operation gleichzeitig im gesamten Netzwerk statt.

„Alle logischen Operationen lassen sich deswegen in diesem Netzwerk gleichermaßen ausführen“, so Timme.

Dadurch können bereits relativ kleine Systeme eine unglaublich große Vielzahl möglicher Operationen ausführen: Während mit fünf schwingenden Elementen lediglich zehn verschiedene Systemzustände erreicht und somit zehn verschiedene Rechnungen ausgeführt werden können, ergeben sich für 100 Elemente bereits 5 x 10^20. Diese Anzahl entspricht dem 10000-fachen aller Buchstaben in allen Büchern in allen Bibliotheken der Welt. Zudem löst der complex network computer einige Aufgaben wie etwa das grobe Sortieren von Zahlen deutlich schneller als sein konvetionelles Gegenstück.

In einer ersten Anwendung hat sich das neue Rechenprinzip bereits bewährt. So konnten die Wissenschaftler einen einfachen Roboter konstruieren, der sich selbst den Weg durch einen Hindernisparcour sucht. Die Eingangssignale seiner Sensoren entsprechen dabei den Störungen des Systems. „Als Hardware könnten in diesem Fall elektrische Schwingkreise dienen“, erklärt Schittler Neves. „In unserer allerersten Anwendung haben wir mit einem herkömmlichen Computer ein solches System elektrischer Schwingkreise zunächst simuliert, um den Roboter zu steuern“, ergänzt er. An einer konkreten Umsetzung in elektronischer Hardware arbeiten die Wissenschaftler gerade.

„Von einem leistungsfähigen Computer im eigentlichen Sinne sind wir zwar noch weit entfernt“, so Timme. „Doch wir konnten zeigen, dass die Idee grundsätzlich funktioniert“, ergänzt er. Der aktuelle Stand ist somit vergleichbar mit dem des Quantencomputers. Wie sich mit Hilfe von Quantenalgorithmen rechnen lässt, wird in der Theorie immer weiter aufgeklärt. Doch ob etwa Halbleiterstrukturen, Supraleiter, Anordnungen einzelner Atome oder völlig andere physikalische Systeme als Hardware in Frage kommen, ist noch immer Gegenstand der Forschung.

„Gekoppelte Pendel werden es im Falle des complex network computer wohl eher nicht sein“, schmunzelt Timme. Da für ein effizientes Rechnen viele tausende solcher gekoppelter Pendel gebraucht würden, eignet sich das System eher zur Veranschaulichung. Größere Hoffnungen setzen die Forscher in Systeme gekoppelter Laser. Diese weisen nicht nur genau abgestimmte Frequenzen auf, die eine weitere Voraussetzung für complex network computer sind, sondern zeichnen sich auch durch besonders hohe Frequenzen von bis zu einigen Milliarden Schwingungen pro Sekunde aus, mit denen ein Computer besonders schnell rechnen könnte.

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.ds.mpg.de/

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Ein stabiles magnetisches Bit aus drei Atomen
21.09.2017 | Sonderforschungsbereich 668

nachricht Drohnen sehen auch im Dunkeln
20.09.2017 | Universität Zürich

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie