Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rechenleistung der Zukunft

26.06.2014

Mehr als 1.000 Prozessorkerne auf einem Chip – so sehen nach Meinung von Experten die Rechner der Zukunft aus.

Mit der Rechenleistung aber werden sich bei den neuen Vielkern-Prozessoren auch die Herausforderungen vervielfachen: Wie kann die Rechenleistung für hochgradig parallele Anwendungen nutzbar gemacht werden? Wie lässt sich die Ausführungszeit von Rechenoperationen verlässlich vorhersagen und planen? Wie kann man Hochleistungsrechnen energieeffizienter gestalten?

An diesen Fragen tüfteln Wissenschaftler von drei Hochschulen unter der Leitung der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) im Forschungsverbund „Invasives Rechnen“.

Der Sonderforschungsbereich/Transregio wird von der Deutschen Forschungsgemeinschaft (DFG) nun in einer weiteren Förderperiode mit 9,6 Millionen Euro unterstützt.

Eine immer größere Zahl an gleichzeitigen Rechenoperationen: in Supercomputern ist dies heute schon Alltag. Auf handelsüblichen Computern sind es heute lediglich bis zu acht Kerne, die parallel arbeiten. Aber auch in der Rechnertechnologie von Smartphones, Tablet-PCs und auch im Automobil ist diese hohe Rechenleistung immer mehr gefragt. Die drei großen Herausforderungen, die diese Entwicklung mit sich bringt, nehmen die FAU-Forscher in den Blick.

Zum einen gilt es, bereits im Programm anzugeben, welche Rechenleistung im System bereitzustellen ist. Ein Anwendungsbeispiel, das die Forscher im Forschungsverbund „Invasives Rechnen“ hierfür im Visier haben, ist ein Roboter, der sich in einem bestimmten Umfeld bewegt und auf seine Umwelt reagiert.

Alle seine Funktionen müssen gleichzeitig einsatzbereit sein: die Bildverarbeitung beim Sehen zum Beispiel, so dass er die Treppe erkennt, auf die er zuläuft. Dies darf aber gleichzeitig nicht zu Lasten der Steuerung der Beinbewegung gehen, sonst fällt er die Treppe hinunter. Dieses Prinzip lässt sich auf viele komplexe Geräte und Anwendungen übertragen. Auf die Medizintechnik etwa, wo die Bildverarbeitung im Computertomographen ebenfalls hochgradig parallele Rechenleistung erfordert.

Der Zuwachs an Rechenleistung durch viele Prozessoren bringt jedoch eine weitere Herausforderung mit sich: den immer höheren Energieverbrauch. Mehr Prozessoren fressen mehr Strom. Und: Sie erhitzen sich stärker. Das heißt, sie brauchen Kühlung oder können gar nicht alle gleichzeitig betrieben werden, was den Nutzen so vieler Kerne wiederum einschränkt. Rechenzentren, wie das Leibniz-Rechenzentrum in München, haben Stromkosten in Millionenhöhe.

Aber auch im kleineren Maßstab steht ein geringer Energieverbrauch immer weiter oben auf der Prioritätenliste. Waren es früher die Hardwarekosten, die die Anzahl an Prozessoren auf einem Chip limitierten, sind es heute die Stromkosten. Neben vielen anderen technologischen Entwicklungen, die hier Abhilfe schaffen könnten, ist einmal mehr die Rechnersteuerung eine Stellschraube, an der sich drehen lässt.

Die Wissenschaftler arbeiten beispielswiese an Algorithmen, die intelligent die Rechenkapazität nutzen und Operationen von einem Teil des Chips in einen anderen verlagern, der gerade nichts zu tun hat – und dem ersten damit die Gelegenheit geben, abzukühlen. Gelingt es, die Hitzeentwicklung auf dem Chip einzudämmen, wird die Hardware auch sicherer und zuverlässiger – sie altert weniger schnell, fällt seltener aus. Nicht zuletzt in Systemen mit hohen Verlässlichkeitsanforderungen wie in der Luftfahrt oder im Automobil ist dies essentiell.

Schließlich ist das Thema Sicherheit von Anwendungen und deren Daten eine entscheidende Anforderung. Gerade bei Plattformen, auf denen unterschiedliche Anwendungen (Apps) laufen, stellt sich die Frage, mit welchen Mechanismen sich Sicherheit herstellen und garantieren lässt. Dabei geht es nicht nur um sicherheitskritische Daten, sondern auch darum, zu verhindern, dass eine Anwendung eine andere „beobachten“ kann. Schließlich lassen sich allein schon aus Rechenmustern – zum Beispiel der Rechenintensität zu bestimmten Zeiten – Informationen gewinnen.

Bei all diesen Fragestellungen bauen die Forscherinnen und Forscher der FAU auf den Ergebnissen der vergangenen vier Jahre auf, in denen sie zeigen konnten, dass sich die Idee des invasiven Rechnens von der Anwendung bis hinunter zur Hardware durchgängig umsetzen lässt.

„Für den IT-Standort Deutschland ist es von herausragender Bedeutung, dass Rechnertechnologie nicht nur im Ausland eingekauft und hier in Produkten verbaut wird, sondern dass auch die deutsche IT-Landschaft mit Innovationen aufwarten kann und die Technologie durchgängig beherrscht“, meint Transregio-Sprecher Prof. Dr. Jürgen Teich, Lehrstuhl für Informatik 12, Hardware-Software-Co-Design.

„Natürlich werden es weiterhin die großen bekannten Hersteller sein, die neue Generationen an Prozessoren auf den Markt bringen. Die Erfüllung von Qualitätszusagen für Programme, wie Zuverlässigkeit, Ausführungszeit und Sicherheit, erfordert jedoch ein radikales Umdenken aller Hard- und Softwarestrukturen inklusive der Betriebssystemfunktionen. Genau das will unser interdisziplinärer Sonderforschungsbereich darlegen durch eigene Neuentwicklungen – angefangen vom Aufbau von Vielkern-Prozessoren bis hin zu neuen Programmiersprachelementen.“

Weitere Informationen für die Medien:
Prof. Dr. Jürgen Teich
Tel.: 09131/85-25150
teich@informatik.uni-erlangen.de

Blandina Mangelkramer | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.fau.de/

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht KogniHome feiert die Wohnung der Zukunft
26.06.2017 | Universität Bielefeld

nachricht Der Form eine Funktion verleihen
23.06.2017 | Institute of Science and Technology Austria

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie