Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Heiße Spins“ – neue Dynamik in magnetischen Schichtsystemen entdeckt

05.09.2012
Ein internationales Forscherteam mit Beteiligung aus Jülich und Kaiserslautern hat jetzt einen neuen physikalischen Effekt in einem System aus magnetischen Schichten entdeckt, der auf einem Transport angeregter („heißer“) Spins basiert und neue Wege für die Computertechnologie eröffnen könnte (Nature Communications, DOI: 10.1038/ncomms2029).
Arbeitsspeicher mit ihren unzähligen winzigen Kondensatoren sind das Kurzzeitgedächtnis von Computern und Laptops. Sie speichern die gerade benutzten Programme und Dateien zwischen. Damit die Daten nicht verloren gehen, müssen die Kondensatoren regelmäßig neu geladen werden. Das kostet Energie und Zeit. Und fällt der Strom mal aus, sind die zwischengespeicherten Daten unwiederbringlich verloren.

Würde man dagegen magnetische Materialien zum Speichern der Informationen nutzen, ließe sich viel Energie sparen. Denn die Daten würden dann so lange gespeichert, bis sie wieder überschrieben werden, müssten also nicht regelmäßig aufgefrischt werden und gingen auch bei einem Stromausfall nicht verloren. Außerdem würden die Rechner schneller, denn die Daten könnten mit Hilfe sehr kurzer Laserpulse geschrieben werden. Solche Pulse lassen sich heute schon mit einer Dauer von weniger als einer Billionstel Millisekunde (10-15 Sekunden) erzeugen.

Die Grafik verdeutlicht das Spinstrom-Modell. Ein Laserpuls (rote Linie) trifft ein System magnetischer Schichten und löst eine Wanderung der Spins (symbolisiert durch rote Pfeile) in der blauen Schicht aus. Die Spins verstärken die Magnetisierung der unteren Schicht, wenn sie parallel zu deren Magnetisierung ausgerichtet sind. Bei antiparalleler Ausrichtung der Magnetisierung in den beiden Schichten schwächt die Wanderung der Spins dagegen die Magnetisierung in der unteren Schicht. Ein zweiter Laserpuls (blau eingezeichnet) liest den Effekt aus. Bildquelle: Forschungszentrum Jülich

Noch fehlt aber das detaillierte Wissen, wie sich das sogenannte magneto-optische Schalten kontrollieren lässt. Forscher aus Jülich, Kaiserslautern, Schweden und den USA haben nun einen neuen Effekt entdeckt, der eine grundlegende Frage klärt und dabei neue Wege für Anwendungen eröffnen könnte.

Die Wissenschaftler vom Forschungszentrum Jülich, der Technischen Universität sowie dem Landesforschungszentrum OPTIMAS Kaiserslautern sowie Forschungseinrichtungen in Schweden und den USA untersuchten erstmals die Wirkung von Laserpulsen auf ein hauchdünnes System aus magnetischen Schichten, getrennt für jede einzelne Schicht. „Bisher waren solche Untersuchungen nur für Schichtsysteme insgesamt durchgeführt worden; es gab keine Möglichkeit, die einzelnen Schichten getrennt voneinander zu untersuchen“, erläutert Denis Rudolf, Doktorand am Jülicher Peter Grünberg Institut, das nach dem Jülicher Nobelpreisträger und Pionier der Spintronik-Forschung benannt ist. „Durch den Einsatz besonders kurzwelliger Pulse im weichen Röntgenbereich konnten wir nun auch erstmals in die tiefen Schichten des Systems blicken.“

Dabei erlebten sie eine Überraschung: Bisher ergaben Messungen stets, dass Laserpulse die Magnetisierung von magnetischen Schichten und Schichtsystemen kurzfristig verringern können. Als Grund wurden dafür verschiedene Erklärungen herangezogen, unter anderem, dass sich das Material durch den Puls so stark aufheizt, dass die Magnetisierung teilweise verloren geht.
Nun aber maßen die Forscher in einem Fall stattdessen eine vorübergehende Verstärkung der Magnetisierung: Wenn zwei magnetische Schichten des untersuchten Stapels zunächst parallel ausgerichtet waren, verstärkte sich durch den Puls die Magnetisierung der unteren Schicht, während die der oberen Schicht sich wie erwartet verringerte. Bei eingangs antiparalleler Ausrichtung der Magnetschichten verringert sich die Magnetisierung hingegen erwartungsgemäß in beiden Schichten.

„Das spricht deutlich für eine neue Theorie“, sagt Prof. Martin Aeschlimann von der TU und dem Landesforschungszentrum OPTIMAS Kaiserslautern. Demnach führen die Pulse den Elektronenspins Energie zu. Die entstandenen „heißen“ Spins können sich verstärkt bewegen; sogenannte Spinströme fließen.
Aeschlimann: „Da in einem magnetischen Material stets eine kleine Anzahl der Spins entgegen der Gesamtmagnetisierung ausgerichtet sind, kommen diese nicht weit voran, nur die Spins mit der „richtigen“ Orientierung können signifikant wandern. Wenn diese in der Nachbarschicht ankommen, verstärken sie die schon vorhandene Magnetisierung, wenn diese parallel ist, oder schwächen sie, wenn sie antiparallel ist.“

Noch ist der Effekt zu schwach für eine technische Nutzung. Die Forscher suchen nun nach Materialien, die stärkere Spinströme entwickeln und nach Möglichkeiten, die Schichtsysteme so zu strukturieren, dass die Spinströme gezielt geleitet werden können. Ziel ist es, so viele Spins von einer Schicht in die Nachbarschicht zu leiten, dass die Magnetisierung nicht nur ab- oder zunimmt, sondern in ihrer Ausrichtung umklappt und dadurch ein Datenbit eingeschrieben werden kann.

Annette Stettien | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de/
http://www.fz-juelich.de/pgi/pgi-6/DE/Home/home_node.html
http://optimas.uni-kl.de/

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Geheime Datensammler auf dem Smartphone enttarnen
21.11.2017 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht Wafer zu Chip: Röntgenblick für weniger Ausschuss
21.11.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wasserkühlung für die Erdkruste - Meerwasser dringt deutlich tiefer ein

21.11.2017 | Geowissenschaften

Eine Nano-Uhr mit präzisen Zeigern

21.11.2017 | Physik Astronomie

Zentraler Schalter

21.11.2017 | Biowissenschaften Chemie