Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Quantensprung für die Informationsverarbeitung

24.03.2010
In der Welt von Atomen und Elektronen gelten andere physikalische Gesetze als im Großen. Wissenschaftler wollen diese Gesetze unter anderem für neue Methoden zum Speichern und Austausch von Informationen nutzen. Würzburger Physiker liefern ihnen das dafür notwendige Material.

Es ist eine merkwürdige Welt, hier im Bereich von Atomen und Molekülen: Materie nimmt die Eigenschaften von Wellen an. Im Gegenzug wird Licht, das der Laie als elektromagnetische Welle kennt, ein Produkt von Teilchen - den so genannten Photonen. Physikalische Eigenschaften existieren nur in festen Größenordnungen; Zwischenstufen kommen nicht vor.

Es ist dies die Welt der Quantenmechanik. Diese fundamentale Theorie der Physik, deren Anfänge signifikant von dem in Würzburg geborenen Werner Heisenberg mitgestaltet worden sind, beschreibt die Gesetze des Mikrokosmos und sorgt mit manchen von ihr vorhergesagten Effekten noch immer für Verblüffung.

Quanteneffekte für die Informationsverarbeitung

Diese Quanteneffekte wollen Physiker in Zukunft unter anderem im Bereich der Informationsverarbeitung nutzen. Ein neuer, international zusammengesetzter Forschungsverbund will dafür die Grundlagen schaffen. Daran beteiligt ist auch der Lehrstuhl für Technische Physik der Universität Würzburg. Die EU unterstützt das Projekt mit rund 2,2 Millionen Euro in den kommenden drei Jahren.

"Moderne Rechner werden immer leistungsfähiger - und immer kleiner. Je kleiner die Strukturen aber werden, desto deutlicher tritt die Geltung der Gesetze der Quantenmechanik hervor", erklärt Sven Höfling. Der Physiker ist Gruppenleiter am Lehrstuhl für Technische Physik der Universität Würzburg. Gemeinsam mit Professor Lukas Worschech, dem Leiter des Lehrstuhls, ist er verantwortlich für den Würzburger Beitrag zu dem Forschungsverbund.

Wenn also die Abmessungen der elektronischen Bauteile ohnehin in quantenrelevante Größenordnungen vordringen, biete es sich an, deren Gesetze für eine neue Form der Informationsverarbeitung zu nutzen, so Höfling weiter.

Unendliche viele Möglichkeiten, Informationen zu speichern

"Ein heutiger PC verarbeitet Information rein digital. Das heißt: Er kennt nur die Zustände 1 und 0 beziehungsweise 'Strom fließt' oder 'Strom fließt nicht'", erklärt Lukas Worschech. Andere Möglichkeiten eröffnet die Quantenmechanik: "Informationen lassen sich auf atomarer Ebene mit Zuständen verbinden, die untereinander verschränkt sind", so Worschech.

Auch mehrere Informationseinheiten können in einen Quantenzustand gepackt und getrennt voneinander bearbeitet werden. Dann sind im Prinzip unendlich viele Mischzustände denkbar und dementsprechend viele Möglichkeiten, Informationen aufzubereiten. "Quanten-Informationsverarbeitung", heißt dieser Forschungsbereich.

Ein gigantischer Parallelrechner

Wer das Prinzip verstehen will, muss sich aus seiner makroskopischen Gedankenwelt verabschieden. Denn dann sind beispielsweise Elektronenzustände denkbar, bei denen sich das Teilchen in mehreren Zuständen gleichzeitig befindet. Diese so genannte Superposition wird von Quantenrechnern genutzt. Herkömmliche Rechner hingegen speichern ihre Informationen in Sequenzen, die nacheinander ausgelesen und verarbeitet werden.

Ein Quantencomputer kann das besser: Er produziert eine Überlagerung von Zuständen. Während ein klassisches Bit genau eines von zwei Zuständen einnimmt, kann das Quantenbit sich gleichzeitig in beiden befinden, bevor eine Messung vorgenommen wird. Weil jede Veränderung sich auf die Zustände des Gesamtsystems gleichzeitig auswirkt, arbeitet der Quantencomputer wie ein gewaltiger Parallelrechner und schafft so bisher unerreichte Rechenmöglichkeiten.

Informationspäckchen in der Quantenwelt

Statt auf Elektronen setzen die Physiker für ihre Quantenrechner auf Lichtteilchen, so genannte Photonen. "Photonen sind ein idealer quantenmechanischer Informationsträger", sagt Sven Höfling. Der Informationsgehalt der Teilchen unterliegt so gut wie keinen Störeinflüssen, die Teilchen bewegen sich mit Lichtgeschwindigkeit, sind einfach zu manipulieren und zu registrieren.

Der Informationstransport mit einzelnen Lichtteilchen funktioniert schon heute. "Allerdings sind dafür große Messaufbauten im Labor notwendig", sagt Höfling. An diesem Punkt setzt der neue Forschungsverbund an: "Wir wollen die Technik, für die zur Zeit noch ein ganzes Labor benötigt wird, auf einem einzigen kleinen Chip unterbringen", sagt der Physiker.

Künstliche Atome, die von den Würzburger Forschern in ihren Reinräumen im Mikrostrukturlabor hergestellt werden, dienen als Photonenquelle. Der Transport der Lichtteilchen läuft über winzige Wellenleiter, an deren Ende integrierte Detektoren diese wieder messen.

Der Quantensprung in der Rechnerentwicklung

"Wenn es gelingt, die ganzen Funktionen in der Größenordnung eines einzelnen Mikrochips zu realisieren, bedeutet das für die Informationsverarbeitung einen sprichwörtlichen Quantensprung in der Entwicklung", sagt Höfling. Der angestrebte Paradigmenwechsel sei annähernd vergleichbar mit dem Wechsel von der Röhre zum Transistor in der Frühzeit der Computer - also vom Rechner, der ganze Hallen füllte, hin zum PC, der auf jedem Schreibtisch Platz findet.

Diese Miniaturisierung und daraus folgende Integration vieler Funktionen hat die breite Nutzung der klassischen Informationsverarbeitung in der Gesellschaft ermöglicht. "Für die Quanteninformationsverarbeitung müssen ähnliche anwendungsfreundliche Plattformen erst noch gefunden werden. Der angestrebte Mikrochip ist ein wichtiger Schritt in dieser Richtung", so Höfling.

Drei Jahre hat der Forschungsverbund "Quantip" nun Zeit, seinen Quanten-Chip zu entwickeln. Die Erfahrung und das Knowhow dafür bringen die beteiligten Forschungseinrichtungen jedenfalls mit. Glaubt Höfling an den Erfolg des Vorhabens? "Ich bin zuversichtlich", sagt er. Natürlich: Die Schwierigkeiten ihres Vorhabens sind allen Beteiligten bewusst. "Aber das ist häufig in der angewandten Physik der Fall: Wenn etwas nicht funktioniert, eröffnen sich andere Wege. Und Lösungen sehen dann anders aus als ursprünglich gedacht", sagt Höfling, "aber sie lassen sich oft finden". Sollte das auch in diesem Projekt so laufen, wäre das auf jeden Fall "ein Riesendurchbruch."

"Quantip - Quantum integrated photonics" lautet der offizielle Name des Forschungsverbunds. Die Koordination hat Mark Thompson von der University of Bristol. Weiter sind daran beteiligt Forschungseinrichtungen und Universitäten in Australien, Deutschland, Frankreich, Italien und den Niederlanden.

Kontakt:
Prof. Dr. Lukas Worschech, T: (0931) 31-85813, E-Mail: lukas.worschech@physik.uni-wuerzburg.de

Sven Höfling, T: (0931) 31-83613, E-Mail: sven.hoefling@physik.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht KIT baut European Open Science Cloud mit auf
19.02.2018 | Karlsruher Institut für Technologie

nachricht Mit wenigen Klicks zum Edge Datacenter
19.02.2018 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

Von Bitcoins bis zur Genomchirurgie

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zukunft wird gedruckt

19.02.2018 | Architektur Bauwesen

Fraunhofer HHI präsentiert neueste VR- und 5G-Technologien auf dem Mobile World Congress

19.02.2018 | Messenachrichten

Stabile Gashydrate lösen Hangrutschung aus

19.02.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics