Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Plasma-Transistoren für billigere Displays

05.02.2009
Deutlich dünnere Panels als mit heutiger Technologie möglich

Forscher an der University of Illinois at Urbana-Champaign (UIUC) haben einen Plasma-Transistor entwickelt, der leichtere und preisgünstigere Flachbildschirme in Aussicht stellt.

Der Plasma-Transistor verbindet einen Festkörper-Elektronenemitter mit einer winzigen Aushöhlung, in der sich elektrisch geladenes Gas (Plasma) befindet. Das verspricht eine einfache Kontrolle über die Helligkeit.

"Das neue Gerät kann mit einer Emitterspannung von fünf Volt oder weniger sowohl den Plasma-Leitungsstrom als auch die Lichtemission steuern", erklärt Gary Eden, Direktor des Laboratory for Optical Physics and Enginerring der UIUC. Langfristig sollen auch Plasma-Displays mit höherer Auflösungen möglich werden.

In der 500 Mikrometer großen Mikroaushöhlung des Plasma-Transistors befindet sich ein geladenes Gas, das bei Anregung durch Elektronen Licht abgibt. Die Farbe hängt dabei vom Gas ab, beispielsweise liefert Neon rotes und Argon blaues Licht. In einer äußeren Grenzschicht dieses Plasmas wird Strom nicht von Elektronen, sondern positiv geladenen Ionen geleitet, was eine hohe Spannung erfordert. Bis zu 200 Volt sind daher nötig, damit das Plasma Strom überhaupt leitet und Licht abstrahlt.

"Wenn wir Elektronen aus dem Emitter in die Grenzschicht injizieren, können wir den Elektronenfluss durch das Plasma deutlich steigern, was wiederum die Leitfähigkeit und Lichtemission erhöht", erklärt nun Eden. Dadurch kann relativ leicht kontrolliert werden, wie viel Strom fließt und wie viel Licht der Plasma-Transistor daher abstrahlt. Denn der Elektronenemitter, der das letztendlich steuert, kommt mit Spannungen von bis zu fünf Volt aus, so Eden.

Das Konzept unterscheidet sich deutlich von den Plasma-Displays, die derzeit im Handel erhältlich sind. Dort wird ein Edelgasgemisch genutzt, das bei Unterdruck in Kammern zwischen zwei relativ dicken Glasplatten eingeschlossen ist. Im Gegensatz dazu funktioniert der Plasma-Transistor der UIUC-Wissenschaftler bei normalem atmosphärischen Druck. In früheren Arbeiten hat Edens Team Plasma-Lampen aus zwei Aluminium-Folien mit dazwischen liegender dielektrischer Schicht aus Aluminiumoxid hergestellt.

Über 250.000 solcher Lampen können zu einem Panel verarbeitet werden, das weniger als einen Millimeter dick ist. "Die Möglichkeit, das Plasma in jeder Mikroaushöhlung unabhängig zu kontrollieren, könnte unsere Plasma-Panels in ein preisgünstigeres Plasma-Display mit höherer Auflösung verwandeln", meint Eden.

"Das ist ein interessanter Ansatz, doch die Forschung steht noch ziemlich am Anfang", kommentiert Rainer Kling von der Abteilung Licht- und Plasmaphysik am Lichttechnischen Institut der Universität Karlsruhe gegenüber pressetext. Für ihn sei zwar ersichtlich, wie die Entwicklung zu leichteren und billigeren Plasma-Displays führen könnte. "Die Plasmazelle muss aber sicher noch deutlich optimiert werden, damit das praxistauglich wird", meint der Wissenschaftler. Wesentliche Herausforderungen für das Team an der UIUC werden aus seiner Sicht das Erzielen einer wirklich guten Display-Auflösung und hoher Helligkeiten sein.

Thomas Pichler | pressetext.deutschland
Weitere Informationen:
http://www.illinois.edu
http://www.lti.uni-karlsruhe.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Schutz vor Angriffen dank flexibler Programmierung
22.03.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

nachricht Störungsfreie Kommunikation für die Fabriken von morgen
22.03.2017 | Hochschule für Technik, Wirtschaft und Kultur Leipzig

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen