Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Personalisierte virtuelle Gehirne: Big data – big theory

02.08.2016

ERC Consolidator Grant für Charité-Neurowissenschaftlerin

Das Gehirn ist ein anpassungsfähiges und hochkomplexes System. Wie die einzelnen Komponenten zusammenwirken und zu geistigen Leistungen gelangen, darüber ist allerdings nach wie vor wenig bekannt. Ein Forscherteam um Privatdozentin Dr. Petra Ritter an der Charité – Universitätsmedizin Berlin setzt daher auf personalisierte Simulationen, um Zusammenhänge innerhalb des Gehirns aufzudecken. Der Europäische Forschungsrat (ERC) fördert die Arbeiten in den kommenden fünf Jahren mit 1,87 Millionen Euro.


Virtuelle Bildgebung: Das personalisierte Gehirnmodell simuliert Gehirnaktivität.

Copyright: Charité – Universitätsmedizin Berlin.


Biologisch realistische Computermodelle entschlüsseln, wie neurologische Krankheiten entstehen.

Copyright: Charité – Universitätsmedizin Berlin.

Gehirnfunktionen können auf vielen verschiedenen Ebenen untersucht werden. So ist es möglich, Daten von einzelnen Nervenzellen, kleinen neuronalen Netzwerken und dem gesamten Gehirn zu messen. Jedoch gibt es bislang keine Methode, die gleichzeitig Daten auf den verschiedenen zeitlichen und räumlichen Skalen erheben kann. Daher ist sehr wenig darüber bekannt, wie die verschiedenen Ebenen in der Gesamtheit zusammenwirken. Zelluläre Vorgänge mit konkretem Wahrnehmen, Verstehen und Verhalten in Verbindung zu verbinden, ist noch immer schwierig.

„Ziel des aktuellen Projektes ist es daher, ein theoretisches Gerüst zu erstellen, das die verschiedenen Ebenen miteinander verbindet und quantifiziert“, so Dr. Ritter, Privatdozentin an der Klinik und Hochschulambulanz für Neurologie der Charité.

Die personalisierte Gehirnsimulation beschäftigt Dr. Ritter bereits seit mehreren Jahren. Die Vision der Forscherin: „Wir wollen sichtbar machen, wie Informationen im Gehirn fließen, um neurologische Prozesse und Krankheitsbilder aufschlüsseln zu können“, so Dr. Ritter.

Dazu sollen individuell erhobene Daten in Simulationen des Gehirns einfließen. Derzeit sind funktionelle bildgebende Verfahren nur begrenzt für den einzelnen Patienten nutzbar, individuelle Vorhersagen können meist nicht getroffen werden. „Das gilt es zu ändern und eine Art ‚mathematisches Mikroskop‘ für das Gehirn zu entwickeln“, erklärt die Wissenschaftlerin. „Ziel soll sein, dass Computersimulationen in Kombination mit Bildgebung die verschiedenen zeitlichen und räumlichen Skalen im Gehirn verknüpfen.“

Elektroenzephalographie, funktionelle Magnetresonanztomographie und Diffusionstensor-Bildgebung sind Teil des methodischen Repertoires, mit dem das interdisziplinäre Team um Dr. Ritter die Struktur und Funktion von Gehirnen vermisst. Es handelt sich um Methoden, die sehr große Datensätze produzieren.

Die Herausforderung besteht darin, alle diese Daten in eine zusammenhängende Theorie und am Ende in einem Modell des Gehirns zusammenzufügen. Gemeinsam mit internationalen Kooperationspartnern haben die Forscher eine Plattform mit dem Titel ‚The Virtual Brain’ entwickelt.

Mathematische Gehirnmodelle von einzelnen Personen können hier standardisiert und reproduzierbar berechnet werden. Die Open-Source-Plattform ermöglicht nicht nur die Zusammenarbeit vieler Forscherteams weltweit, sondern regt auch zum Austausch an. Denn beides ist für das Vorhaben entscheidend: möglichst viele Daten und übergreifende Theorien.

Die aufwändigen und detaillierten Simulationen werden auf Supercomputern gerechnet und tragen dazu bei, die Gehirnaktivität, insbesondere mit Blick auf mögliche Fehlfunktion, besser zu verstehen:

„Anhand dieser Avatare wollen wir in der Zukunft Vorhersagen für Erkrankungen und mögliche Verläufe treffen können. Dabei geben unsere Methoden Aufschluss über die Wirkweisen anatomischer und pharmakologischer Interventionen, ebenso können sie Schlüssel zur Entdeckung neuer Biomarker und Therapien sein“, so Dr. Ritter. Im Rahmen des ERC-Projektes sollen beispielsweise aus den nichtinvasiven Bildgebungsdaten von gesunden Erwachsenen Rückschlüsse auf Mechanismen sich verändernder Hirnfunktionen während des Alterns geschlossen werden.

ERC Consolidator Grant
Der ERC Consolidator Grant ermöglicht es wissenschaftlichem Nachwuchs, ein Forschungsteam und dessen wissenschaftliche Arbeit weiter zu etablieren. Der Grant wird aktuell vom Europäischen Forschungsrat (ERC) im Rahmen des 8. Rahmenprogramms Horizon 2020 vergeben. Für das Forschungsvorhaben an der Klinik und Hochschulambulanz für Neurologie der Charité stehen nun 1,87 Millionen Euro zur Verfügung (Grant Agreement n° 683049).

Kontakt:
Privatdozentin Dr. Petra Ritter
Klinik und Hochschulambulanz für Neurologie
Charité – Universitätsmedizin Berlin
t: +49 30 450 560 102
E-Mail: petra.ritter@charite.de

Weitere Informationen:

http://www.charite.de
http://neurologie.charite.de/forschung/arbeitsgruppen/brainmodes_group_petra_rit...
http://www.thevirtualbrain.org
http://www.neurocure.de

Manuela Zingl | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Satellitendaten für die Landwirtschaft
28.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht Lemgoer Forscher entwickeln Intelligente Assistenzsysteme für mobile Anwendungen in der Industrie
25.07.2017 | Hochschule Ostwestfalen-Lippe

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Firmen räumen bei der IT, Mobilgeräten und Firmen-Hardware am liebsten in der Urlaubsphase auf

28.07.2017 | Unternehmensmeldung

Dunkel war’s, der Mond schien helle: Nachthimmel oft heller als gedacht

28.07.2017 | Geowissenschaften

8,2 Millionen Euro für den Kampf gegen Leukämie

28.07.2017 | Förderungen Preise