Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Perseus übersetzt Proteomik-Daten

27.07.2016

Sprechen Sie -omik? Wenn nicht, kann Ihnen Perseus helfen. Forscher von Max-Planck-Institut für Biochemie in Martinsried haben die kostenfreie Software-Plattform ‒ www.perseus-framework.org für Anwender von Hochdurchsatzverfahren wie der Massenspektrometrie entwickelt, um die biologischen Rohdaten in relevante Ergebnisse zu übersetzen. Wie aktuell in Nature Methods berichtet, lassen sich hier molekulare Signaturen aus Zellen, Geweben und Körperflüssigkeiten auch ohne bioinformatisches Training identifizieren und charakterisieren. Perseus ist auf proteomische Studien ausgerichtet, hat sich aber auch bei anderen molekularen Studien bewährt und wird entsprechend erweitert werden.

Ohne Proteine läuft im Organismus gar nichts. Diese Moleküle arbeiten als molekulare Maschinen, stehen als Baumaterial zur Verfügung und treten in einer Vielzahl anderer Rollen auf. Sie sind selten aber Einzelkämpfer, so dass mittlerweile die Analyse der Gesamtheit aller Proteine in einer Zelle, einem Gewebe, einer Körperflüssigkeit oder sogar in einem Organismus im Vordergrund steht.


Forscher in den Lebenswissenschaften können jetzt die kostenfreie Software-Plattform www.perseus-framework.org zur Analyse von Rohdaten aus Hochdurchsatzverfahren nutzen.

Tyanova, Krause © MPI für Biochemie

So lässt sich nachweisen, welches Molekül wann und wo in welcher Menge auftritt und mit wem es interagiert, wobei es entsprechende Ansätze für andere biologische Moleküle gibt. Moderne Hochdurchsatzverfahren wie die Massenspektrometrie liefern die nötigen Rohdaten von oft vielen Tausend unterschiedlichen Proteinen.

Aus diesen Datenbergen müssen sinnvolle und relevante Zusammenhänge extrahiert und interpretiert werden, was heute angesichts der ungeheuren Menge an Rohdaten nur noch mit Hilfe computerbasierter Methoden möglich ist. „Diese Schritte sind zum Flaschenhals bei Hochdurchsatz-Studien geworden", sagt Jürgen Cox vom Max-Planck-Institut für Biochemie in Martinsried, unter dessen Leitung die Perseus-Plattform entwickelt wurde.

„Vermutlich liegen noch viele potenziell wichtige Ergebnisse in bereits erhobenen Proteomik Daten verboren, nur weil die passenden Computermethoden technisch zu anspruchsvoll sind oder nicht bei den Forschern landen, die die biologische Relevanz der Ergebnisse erfassen könnten."

Cox und sein Team haben deshalb dafür gesorgt, dass einzelne Algorithmen nicht mehr länger ihren Weg in die richtigen Labors finden müssen, sondern dass sich Forscher ihre Software nach Bedarf an einer zentralen Stelle abholen können. Die Perseus-Plattform erlaubt unter anderem auch hochvariante Proteinmengen zu durchleuchten und zu analysieren.

Sie kann Proteinmengen quantifizieren sowie die Interaktionen und Modifikationen der Moleküle erfassen. Die Plattform enthält statistische Methoden, die etwa Muster erkennen, Langzeitdaten analysieren, multiple Hypothesen testen und auch Daten unterschiedlicher Verfahren vergleichen.

Vorkenntnisse oder ein spezielles Training sind nicht nötig, weil die Plattform eine interaktive Umgebung mit Selbstbeteiligung ist, deren Nutzung sich weitgehend intuitiv erschließen sollte. Beschreibungen der Funktionen und Parameter auf der Seite helfen dabei ebenso wie YouTube-Videos zur Nutzung und eine Google-Gruppe mit bereits mehr als 1400 aktiven Nutzern.

„Perseus hat die ersten Probeläufe auch bei extrem komplexen interdisziplinären Untersuchungen erfolgreich absolviert", sagt Cox. „Tatsächlich läuft die Software nicht nur bei proteomischen, sondern auch bei anderen großen Datensets. Wir werden die Programme künftig etwa an metabolomische Studien anpassen."

Originalpublikation:
S. Tyanova, T. Temu, P. Sinitcyn, A. Carlson, M.Y. Hein, T. Geiger, M. Mann & J. Cox: The Perseus computational platform for comprehensive analysis of (prote)omics data, Nature Methods, Juni 2016
DOI: 10.1038/nmeth.3901

Prof. Jürgen Cox, PhD
Computational Systems Biochemistry
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: cox@biochem.mpg.de
www.biochem.mpg.de/cox

Dr. Christiane Menzfeld
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de
www.biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de - Webseite des Max-Planck-Institutes für Biochemie
http://www.biochem.mpg.de/cox - Webseite der Forschungsgruppe "Computational Systems Biochemistry“ (Jürgen Cox)

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Lemgoer Forscher entwickeln Intelligente Assistenzsysteme für mobile Anwendungen in der Industrie
25.07.2017 | Hochschule Ostwestfalen-Lippe

nachricht Neue Anwendungsszenarien für Industrie 4.0 entwickelt
25.07.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Basis für neue medikamentöse Therapie bei Demenz

27.07.2017 | Biowissenschaften Chemie

Aus Potenzial Erfolge machen: 30 Rittaler schließen Nachqualifizierung erfolgreich ab

27.07.2017 | Unternehmensmeldung

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie