Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Organisiertes Chaos macht Robotern Beine

18.01.2010
Wissenschaftler aus Göttingen entwickeln einen autonomen Laufroboter, der durch "Chaos-Kontrolle" flexibel verschiedene Gangarten nutzen kann

Schon einfache Insekten können mit ihren sechs Beinen ganz unterschiedliche Bewegungsmuster ausführen.


Nach dem Prinzip der Chaos-Kontrolle produziert der Roboter reguläre Beinbewegungen, wenn er normal geht. Er kann aber ein chaotisches Bewegungsmuster nutzen, um sich zu befreien, wenn er in ein Loch getreten ist. © Network Dynamics Group, Max Planck Institute for Dynamics and Self-Organization.

Je nachdem, ob das Tier langsam oder schnell krabbelt oder Hindernisse überwindet, nutzt es verschiedene Gangarten. Wissenschaftler aus Göttingen haben nun einen Roboter entwickelt, der je nach Situation flexibel zwischen mehreren verschiedenen Gangarten hin- und herschalten kann.

Der Erfolg liegt in der Einfachheit: Ein einziges kleines Verschaltungsnetzwerk mit nur wenigen Verknüpfungen kann ganz unterschiedliche Bewegungsmuster erzeugen. Dazu nutzt es einen Mechanismus zur "Chaos-Kontrolle". Diese interdisziplinäre Arbeit wurde gemeinsam von Wissenschaftlern am Bernstein Zentrum für Computational Neuroscience, an der Georg-August Universität Göttingen und am Max-Planck-Institut für Dynamik und Selbstorganisation durchgeführt. (Nature Physics, 17. Januar 2010)

Sich periodisch wiederholende Bewegungen wie Laufen oder Atmen werden in Mensch und Tier von kleinen neuronalen Einheiten gesteuert, so genannten "central pattern generators" (CPG, zentrale Mustererzeuger). Dieses Prinzip haben sich Wissenschaftler auch bei der Entwicklung von Laufrobotern zu Nutze gemacht. Bisher war meist für jede Gangart ein eigener CPG im Roboter zuständig. Über verschiedene Sensoren erhält der Roboter Informationen über seine Umwelt - ob er vor einem Hindernis steht oder eine Steigung hinaufgeht. Anhand dieser Informationen wählt er dann den CPG aus, der die für die jeweilige Situation passende Gangart steuert.

Ein einziger Mustererzeuger für alle Gangarten

Das Besondere an dem Roboter der Göttinger Wissenschaftler ist, dass er mit nur einem einzigen CPG auskommt, der ganz unterschiedliche Gangarten erzeugen und flexibel zwischen ihnen hin- und herschalten kann. Dieser CPG ist ein winziges Netzwerk aus einfachen Verschaltungselementen, vergleichbar mit zwei neuronalen Einheiten. Das Geheimnis seiner Funktionsweise liegt in der so genannten "Chaos-Kontrolle". Ohne Kontrolle produziert das Netzwerk ein chaotisches Aktivitätsmuster. Dieses lässt sich aber sehr leicht in ein periodisches Muster überführen, das den Gang bestimmt. Je nach sensorischem Eingangssignal können dabei unterschiedliche Muster - und damit unterschiedliche Gangarten - erzeugt werden.

Diese Verbindung zwischen Sensorik und CPG kann entweder beliebig vorprogrammiert oder vom Roboter durch Erfahrung gelernt werden. Wie dies funktioniert, zeigen die Wissenschaftler an einem Beispiel: Der Roboter kann eigenständig lernen, mit möglichst geringem Energieaufwand eine Steigung hinaufzulaufen. Sobald der Roboter eine Steigung erreicht, zeigt ein Stromsensor einen zu hohen Verbrauch an. Daraufhin wird die Verschaltung zwischen dem Stromsensor und dem Kontrolleingang des CPG so lange variiert, bis eine Gangart gefunden wurde, mit der der Roboter weniger Energie verbraucht. Wenn die richtigen Verschaltungen gefestigt sind, hat der Roboter den Zusammenhang zwischen Steigung und Gangart gelernt. Beim zweiten Versuch, den Berg zu erklimmen, wird er sofort die passende Gangart einlegen.

In Zukunft soll der Roboter auch mit einer Speicherkapazität ausgestattet werden, damit er eine Bewegung auch dann zu Ende führt, wenn er keinen sensorischen Input mehr bekommt. Soll der Roboter beispielsweise über ein Hindernis steigen, müsste er mit allen sechs Beinen nacheinander einen großen Schritt machen. "Damit ist er derzeit noch überfordert: Kaum ist das Hindernis aus seinem Blickfeld verschwunden, hat er vergessen, welches Gangmuster er gerade anwenden soll", sagt Marc Timme vom Max-Planck-Institut für Dynamik und Selbstorganisation. "Wenn der Roboter mit einem motorischen Gedächtnis ausgestattet ist, wird er seine Bewegungen vorausschauend planen können."

Kontaktinformationen:

Prof. Dr. Marc Timme
Network Dynamics Group
Max-Planck-Institut für Dynamik und Selbstorganisation
Bernstein Center for Computational Neuroscience
Bunsenstr. 10
37073 Göttingen
timme@nld.ds.mpg.de
http://www.nld.ds.mpg.de
Dr. Poramate Manoonpong
Georg-August-Universität Göttingen
Fakultät für Physik
Bernstein Center for Computational Neuroscience
Friedrich-Hundt-Platz 1
37077 Göttingen
poramate@bccn-goettingen.de
http://www.manoonpong.com
http://www.bccn-goettingen.de/Groups/GroupCN
http://www.dpi.physik.uni-goettingen.de/de/home.html
Originalveröffentlichung:
Silke Steingrube, Marc Timme, Florentin Wörgötter and Poramate Manoonpong.
Self-organized adaptation of a simple neural circuit enables complex robot behaviour

Nature Physics, 17. Januar 2010, doi: 10.1038/NPHYS1508

Dr. Katrin Weigmann | idw
Weitere Informationen:
http://www.nncn.de/Aktuelles/Videos/hexapode
http://www.nld.ds.mpg.de
http://www.manoonpong.com

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Erster Modularer Supercomputer weltweit geht am Forschungszentrum Jülich in Betrieb
14.11.2017 | Forschungszentrum Jülich GmbH

nachricht Online-Computerspiele verändern das Gehirn
09.11.2017 | Universität Ulm

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte