Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Organisiertes Chaos macht Robotern Beine

18.01.2010
Wissenschaftler aus Göttingen entwickeln einen autonomen Laufroboter, der durch "Chaos-Kontrolle" flexibel verschiedene Gangarten nutzen kann

Schon einfache Insekten können mit ihren sechs Beinen ganz unterschiedliche Bewegungsmuster ausführen.


Nach dem Prinzip der Chaos-Kontrolle produziert der Roboter reguläre Beinbewegungen, wenn er normal geht. Er kann aber ein chaotisches Bewegungsmuster nutzen, um sich zu befreien, wenn er in ein Loch getreten ist. © Network Dynamics Group, Max Planck Institute for Dynamics and Self-Organization.

Je nachdem, ob das Tier langsam oder schnell krabbelt oder Hindernisse überwindet, nutzt es verschiedene Gangarten. Wissenschaftler aus Göttingen haben nun einen Roboter entwickelt, der je nach Situation flexibel zwischen mehreren verschiedenen Gangarten hin- und herschalten kann.

Der Erfolg liegt in der Einfachheit: Ein einziges kleines Verschaltungsnetzwerk mit nur wenigen Verknüpfungen kann ganz unterschiedliche Bewegungsmuster erzeugen. Dazu nutzt es einen Mechanismus zur "Chaos-Kontrolle". Diese interdisziplinäre Arbeit wurde gemeinsam von Wissenschaftlern am Bernstein Zentrum für Computational Neuroscience, an der Georg-August Universität Göttingen und am Max-Planck-Institut für Dynamik und Selbstorganisation durchgeführt. (Nature Physics, 17. Januar 2010)

Sich periodisch wiederholende Bewegungen wie Laufen oder Atmen werden in Mensch und Tier von kleinen neuronalen Einheiten gesteuert, so genannten "central pattern generators" (CPG, zentrale Mustererzeuger). Dieses Prinzip haben sich Wissenschaftler auch bei der Entwicklung von Laufrobotern zu Nutze gemacht. Bisher war meist für jede Gangart ein eigener CPG im Roboter zuständig. Über verschiedene Sensoren erhält der Roboter Informationen über seine Umwelt - ob er vor einem Hindernis steht oder eine Steigung hinaufgeht. Anhand dieser Informationen wählt er dann den CPG aus, der die für die jeweilige Situation passende Gangart steuert.

Ein einziger Mustererzeuger für alle Gangarten

Das Besondere an dem Roboter der Göttinger Wissenschaftler ist, dass er mit nur einem einzigen CPG auskommt, der ganz unterschiedliche Gangarten erzeugen und flexibel zwischen ihnen hin- und herschalten kann. Dieser CPG ist ein winziges Netzwerk aus einfachen Verschaltungselementen, vergleichbar mit zwei neuronalen Einheiten. Das Geheimnis seiner Funktionsweise liegt in der so genannten "Chaos-Kontrolle". Ohne Kontrolle produziert das Netzwerk ein chaotisches Aktivitätsmuster. Dieses lässt sich aber sehr leicht in ein periodisches Muster überführen, das den Gang bestimmt. Je nach sensorischem Eingangssignal können dabei unterschiedliche Muster - und damit unterschiedliche Gangarten - erzeugt werden.

Diese Verbindung zwischen Sensorik und CPG kann entweder beliebig vorprogrammiert oder vom Roboter durch Erfahrung gelernt werden. Wie dies funktioniert, zeigen die Wissenschaftler an einem Beispiel: Der Roboter kann eigenständig lernen, mit möglichst geringem Energieaufwand eine Steigung hinaufzulaufen. Sobald der Roboter eine Steigung erreicht, zeigt ein Stromsensor einen zu hohen Verbrauch an. Daraufhin wird die Verschaltung zwischen dem Stromsensor und dem Kontrolleingang des CPG so lange variiert, bis eine Gangart gefunden wurde, mit der der Roboter weniger Energie verbraucht. Wenn die richtigen Verschaltungen gefestigt sind, hat der Roboter den Zusammenhang zwischen Steigung und Gangart gelernt. Beim zweiten Versuch, den Berg zu erklimmen, wird er sofort die passende Gangart einlegen.

In Zukunft soll der Roboter auch mit einer Speicherkapazität ausgestattet werden, damit er eine Bewegung auch dann zu Ende führt, wenn er keinen sensorischen Input mehr bekommt. Soll der Roboter beispielsweise über ein Hindernis steigen, müsste er mit allen sechs Beinen nacheinander einen großen Schritt machen. "Damit ist er derzeit noch überfordert: Kaum ist das Hindernis aus seinem Blickfeld verschwunden, hat er vergessen, welches Gangmuster er gerade anwenden soll", sagt Marc Timme vom Max-Planck-Institut für Dynamik und Selbstorganisation. "Wenn der Roboter mit einem motorischen Gedächtnis ausgestattet ist, wird er seine Bewegungen vorausschauend planen können."

Kontaktinformationen:

Prof. Dr. Marc Timme
Network Dynamics Group
Max-Planck-Institut für Dynamik und Selbstorganisation
Bernstein Center for Computational Neuroscience
Bunsenstr. 10
37073 Göttingen
timme@nld.ds.mpg.de
http://www.nld.ds.mpg.de
Dr. Poramate Manoonpong
Georg-August-Universität Göttingen
Fakultät für Physik
Bernstein Center for Computational Neuroscience
Friedrich-Hundt-Platz 1
37077 Göttingen
poramate@bccn-goettingen.de
http://www.manoonpong.com
http://www.bccn-goettingen.de/Groups/GroupCN
http://www.dpi.physik.uni-goettingen.de/de/home.html
Originalveröffentlichung:
Silke Steingrube, Marc Timme, Florentin Wörgötter and Poramate Manoonpong.
Self-organized adaptation of a simple neural circuit enables complex robot behaviour

Nature Physics, 17. Januar 2010, doi: 10.1038/NPHYS1508

Dr. Katrin Weigmann | idw
Weitere Informationen:
http://www.nncn.de/Aktuelles/Videos/hexapode
http://www.nld.ds.mpg.de
http://www.manoonpong.com

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Plattformübergreifende Symbiose von intelligenten Objekten im »Internet of Things« (IoT)
09.12.2016 | Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB

nachricht Von Fußgängern und Fahrzeugen: Uni Ulm und DLR sammeln gemeinsam Daten für das automatisierte Fahren
09.12.2016 | Universität Ulm

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie