Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Optische Uhren können die Sekunde machen

27.05.2016

Eine Neudefinition der Einheit Sekunde auf der Basis von optischen Uhren wird realistisch

Genauer sind sie jetzt schon, aber noch nicht so zuverlässig. Daher haben optische Uhren, die schon einige Jahre lang als die Uhren der Zukunft gelten, die Cäsium-Atomuhren noch nicht als Grundlage für die SI-Basiseinheit Sekunde abgelöst. Das könnte sich aber ändern. Wissenschaftler der Physikalisch-Technischen Bundesanstalt (PTB) haben gezeigt, dass optische Uhren jetzt schon geeignet sind, um an der Realisierung der weltweiten Zeitskala beteiligt zu werden. Ihre Ergebnisse sind in der aktuellen Ausgabe der Zeitschrift „Optica“ veröffentlicht.


Die optische Strontium-Gitteruhr der PTB.

(Foto: PTB)

„Unsere Untersuchung ist ein Meilenstein auf dem Weg zu einer praktischen Einbindung der optischen Uhren“, sagt Christian Grebing, Physiker bei der PTB. Zurzeit hauptsächlich für physikalische Grundlagenuntersuchungen genutzt, könnten optische Uhren einmal eine bedeutende Rolle in der Runde jeder etwa 500 Atomuhren spielen, die die weltweite Zeitskala realisieren.

Diese Uhren sind innerhalb eines globalen Zusammenschlusses dafür zuständig, den weltweiten Finanz-, Kommunikations-, Satellitennavigations- und Energieversorgungssystemen möglichst genaue Zeitsignale zu liefern.

Grundsätzlich arbeitet jede Uhr mit einer Art Pendel, mit einem regelmäßig ablaufenden periodischen Prozess, der gezählt wird − soundsoviele Pendelbewegungen pro Sekunde. Je schneller dieses Pendel, desto genauer kann man die Sekunde ermitteln. Daher sind die Cäsium-Atomuhren, auf denen gegenwärtig die Definition der SI-Basiseinheit Sekunde beruht und mit denen auch praktisch die weltweite Zeit ermittelt wird, schon sehr, sehr genau: Sie ticken gewissermaßen rund 9 Milliarden Mal pro Sekunde.

Ihr Pendel ist eine natürliche Schwingung im Cäsiumatom. Verglichen mit dieser Schwingungsfrequenz, die im Mikrowellenbereich liegt, sind die optischen Uhren nochmal deutlich hektischer. Ihr Pendel ist eine 100 000mal schnellere atomare Schwingung, deren Frequenz im Bereich des optisch sichtbaren Lichts liegt. Sie sind also noch genauer und werden daher schon längere Zeit als potenzielle Nachfolger der Cäsiumuhren gehandelt.

Jetzt rückt dieses Ziel näher. „In rund zehn Jahren könnte es soweit sein“, schätzt Christian Grebing. Er hat mit seinen Kollegen am Beispiel der optischen Strontium-Gitteruhr der PTB gründlich untersucht, wie gut eine solche Uhr den Job des „Zeitmachens“ heute erfüllen würde. Auf der positiven Seite ist da die größere Genauigkeit, auf der negativen Seite die noch relativ häufigen Stillstandszeiten. Eine optische Uhr tickt also nicht so lange am Stück wie die Cäsium-Konkurrenz.

„Aber selbst wenn man das berücksichtigt, so würde der Prozess des „Zeitmachens“ insgesamt verbessert“, betont Grebing. Es wäre also theoretisch von Vorteil, schon jetzt die Definition der Einheit Sekunde zu ändern. Aber er ist realistisch: „Es ist sinnvoll, an der alten Definition festzuhalten, bis klar ist, welche der verschiedenen Typen von optischen Uhren sich am besten eignet. Außerdem ist angesichts des schnellen Fortschrittes auf diesem Gebiet noch gar nicht klar, wie die Reise hin zu noch größerer Genauigkeit weitergehen wird.“

Die Forscher haben zweierlei untersucht: erstens, inwieweit die optische Uhr schon praktisch einsetzbar ist, und andererseits, wie man ihre Sekundenlänge bestmöglich an die gegenwärtige Sekundenlänge anpassen kann. Für das erste Ziel kombinierten sie einen kommerziellen Maser mit der Strontiumuhr der PTB. Ein Maser funktioniert genauso wie ein Laser, jedoch im Mikrowellenbereich. Er diente als verlässliches (wenn auch nicht so genaues) Pendel, das die gelegentlichen Stillstandzeiten der optischen Uhr überbrückte.

Um seine Frequenz in den Frequenzbereich der Strontiumuhr zu übersetzten, nutzten die Forscher einen optischen Frequenzkamm. Auf diese Weise gekoppelt, lief das System 25 Tage lang. In etwa der Hälfte dieser Zeit lieferte die Uhr selbst (und nicht der Maser) die Sekundenticks. Trotz Stillstandzeiten von maximal zwei Tagen am Stück berechneten die Forscher für die 25 Tage eine Abweichung von weniger als 0,20 Nanosekunden.

Um zu untersuchen, wie sich die Sekundenlänge aus der optischen Uhr möglichst nahtlos an die gegenwärtige Sekundlänge anschließen lässt, verglichen die Wissenschaftler ihre Strontiumuhr mit zwei Mikrowellenuhren der PTB. Mithilfe des Masers ließ sich die Unsicherheit dieser Messungen stark verbessern. So maßen die Forscher die Absolutfrequenz der optischen Strontiumuhr mit der bisher geringsten Unsicherheit von etwa 2,5 • 10–16. Das entspricht einem Verlust von nur 100 Sekunden seit Beginn des Universums vor ca. 14 Milliarden Jahren.
(es/ptb)

Ansprechpartner:
Dr. Christian Grebing, PTB-Arbeitsgruppe 4.3, Telefon (0531) 592-4351,
E-Mail: christian.grebing@ptb.de

Die wissenschaftliche Veröffentlichung:
C. Grebing, A. Al-Masoudi, S. Dörscher, S. Häfner, V. Gerginov, S. Weyers, B. Lipphardt, F. Riehle, U. Sterr, C. Lisdat: Realization of a timescale with an accurate optical lattice clock. Optica, Vol. 3, Issue 6, 563-569 (2016). DOI: 10.1364/OPTICA.3.000563

Weitere Informationen:

http://www.ptb.de/cms/presseaktuelles/journalisten/presseinformationen/presseinf...

Dipl.-Journ. Erika Schow | Physikalisch-Technische Bundesanstalt (PTB)

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Erster Modularer Supercomputer weltweit geht am Forschungszentrum Jülich in Betrieb
14.11.2017 | Forschungszentrum Jülich GmbH

nachricht Online-Computerspiele verändern das Gehirn
09.11.2017 | Universität Ulm

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte