Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues EU-Forschungsprojekt entwickelt Open-Source-Software für Supercomputer der Exascale-Klasse

28.10.2015

Eine Milliarde Milliarden, also 10^18 Rechenoperationen pro Sekunde (1 ExaFlop/s): Das ist die Leistung, die Supercomputer der nächsten Generation erbringen sollen. Dabei wird die Programmierung dieser Supercomputer selbst zur Herausforderung. Mit „ExaHyPE“ fördert die Europäische Kommission seit Oktober 2015 ein internationales, an der Technischen Universität München (TUM) koordiniertes Projekt, das in den kommenden vier Jahren die algorithmischen Grundlagen dafür legen soll. Ziel ist die Entwicklung einer neuartigen Software, zunächst für Simulationen in der Geo- und Astrophysik, die unter freier Lizenz veröffentlicht wird. Die Fördersumme beträgt 2,8 Millionen Euro.

Simulationsrechnungen treiben den wissenschaftlichen Fortschritt: Neben Theorie und Experiment sind sie das dritte Standbein des Erkenntnisgewinns. Supercomputer erlauben es, immer genauere und kompliziertere Modelle zu berechnen.


Magnetfeldlinien, nachdem der hypermassive Stern zu einem Schwarzen Loch kollabiert

AEI/ZIB

Das EU-Projekt ExaHyPE („An Exascale Hyperbolic PDE Engine“), in dem sich ein interdisziplinäres Forscherteam aus sieben Institutionen in Deutschland, Italien, Großbritannien und Russland zusammengeschlossen hat, bindet sich in die europäische Strategie ein, bis 2020 einen Supercomputer im Exascale-Maßstab zu entwickeln.

Um die gewaltige Rechenleistung auch für entsprechend umfangreiche Simulationsaufgaben nutzen zu können, muss die gesamte Supercomputing-Infrastruktur samt Systemsoftware auf diese Exascale-Systeme vorbereitet werden.

Leistungsstark, flexibel und energieeffizient

Das Supercomputing der Zukunft stellt die ExaHyPE-Wissenschaftler vor gewaltige Herausforderungen. Das größte Hindernis für die Realisierung eines Exascale-Computers ist aktuell noch der Energieverbrauch: Die derzeit schnellsten Supercomputer der Welt – Tianhe-2 (China), Titan, Sequoia (beide USA) sowie der K Computer (Japan) – arbeiten im Petaflop/s-Bereich (10^15 Rechenoperationen pro Sekunde) und benötigen zwischen 8 und 18 Megawatt (Quelle: http://www.top500.org), wobei die Energiekosten rund 1 Million US-Dollar pro Megawatt und Jahr betragen.

„Ein Exascale-Computer, basierend auf aktuellen Technologien, würde mit einem Bedarf von knapp 70 Megawatt sowohl eine finanzielle wie auch eine infrastrukturelle Herausforderung darstellen“, erläutert ExaHyPE-Koordinator Professor Michael Bader von der TUM. „Die in ExaHyPE entwickelte Simulationssoftware wird daher konsequent auf die Anforderungen zukünftiger energieeffizienter Hardware ausgelegt.“

Auf Hardware-Seite ist daher mit einer extremen Parallelisierung zu rechnen. „2020 werden Supercomputer hunderte Millionen Rechenkerne umfassen“, so Bader. „Gleichzeitig wird die Hardware, die zur weiteren Leistungssteigerung an ihre physikalischen Grenzen getrieben wird und dabei zudem möglichst energieeffizient arbeiten muss, vermehrt zu Ausfällen neigen und somit schwankende Leistungskurven aufweisen. ExaHyPE untersucht daher die dynamische Verteilung von Rechenoperationen auf die Kerne, selbst wenn diese während der Rechnung ausfallen.“

Gleichzeitig gilt es, die hardwareinterne Kommunikation bei der Parallelisierung zu reduzieren. Zum einen geht jeder Datenaustausch zulasten des Energieverbrauchs. Zum anderen werden Supercomputer in zehn Jahren zwar 1000-mal so schnell rechnen können wie heute, doch die Zugriffszeit auf den Speicher wird sich nicht im gleichen Maße entwickeln. Um dennoch schnelle, energieeffiziente Rechenoperationen zu gewährleisten, sollen die verwendeten Algorithmen inhärent speichereffizient sein und so wenig Datenaustausch wie möglich erfordern.

Um möglichst geringen Speicherbedarf mit größtmöglichem Nutzen zu kombinieren, entwickelt das Konsortium neue skalierbare Algorithmen, welche die Auflösung von Simulationen, also die verwendeten numerischen Beobachtungspunkte, dort dynamisch erhöhen, wo die Simulationsrechnung dies erfordert – und nur dort. So können die Wissenschaftler die erforderlichen Rechenoperationen auf ein Minimum beschränken und gleichzeitig größtmögliche Genauigkeit in der Simulation erreichen.

Zwei Anwendungsszenarien: Erdbeben und Gammastrahlenexplosionen

Die ExaHyPE-Forscher werden die neuen Algorithmen anhand zweier Anwendungsszenarien aus der Geo- und Astrophysik erarbeiten: Erdbeben und Gammastrahlenexplosionen. Erdbeben lassen sich nicht vorhersagen, doch Simulationen auf Exascale-Supercomputern könnten es erlauben, zumindest die Risiken von Nachbeben besser einzuschätzen. Regionale Erdbebensimulationen versprechen vor allem ein besseres Verständnis der Vorgänge, die sich bei großen Erdbeben und deren Nachbeben abspielen. Im Bereich der Astrophysik soll ExaHyPE Systeme von umeinander rotierenden, sich vereinigenden Neutronensternen simulieren. Solche Systeme sind nicht nur die stärkste vermutete Quelle von Gravitationswellen, sondern könnten auch die Ursache von sogenannten Gammastrahlenexplosionen sein. Exascale-Simulationen sollen ermöglichen, diese seit langem bestehenden Rätsel der Astrophysik in neuem Licht zu studieren.

Trotz der beiden genau definierten Anwendungsgebiete wollen die Forscher die neuen Algorithmen so allgemein halten, dass sie – mit entsprechender Anpassung – auch in weiteren Disziplinen Anwendung finden, beispielsweise zur Simulation von Klima- und Wetterphänomenen oder von komplizierten Strömungs- und Verbrennungsprozessen in den Ingenieurwissenschaften, aber auch bei der Prognose von Naturkatastrophen wie Tsunamis oder Überschwemmungen. „Unser Ziel ist es, dass mittelgroße, interdisziplinäre Forscherteams die Simulationssoftware nach Fertigstellung binnen eines Jahres für ihre spezifischen Zwecke adaptieren können“, so Bader. Um eine rasche Verbreitung der neuen Technologie zu gewährleisten, wird das Konsortium sie unter freier Lizenz veröffentlichen.

Umfassende Expertise durch internationale, interdisziplinäre Kooperation

Die ExaHyPE-Projektziele erfordern eine intensive Zusammenarbeit von Experten über Disziplin- und Ländergrenzen hinweg. Auf deutscher Seite gehören dem Konsortium die Technische Universität München – Prof. Dr. Michael Bader (Institut für Informatik, High Performance Computing), das Frankfurt Institute for Advanced Studies – Prof. Dr. Luciano Rezzolla (Institut für Theoretische Physik, Goethe Universität Frankfurt), die Ludwig-Maximilians-Universität München – Dr. Alice-Agnes Gabriel und Prof. Dr. Heiner Igel (Department für Geo- und Umweltwissenschaften) sowie die Bayerische Forschungsallianz – Dipl.-Ing. Robert Iberl (Fachbereich Informations-/Kommunikationstechnologien) an. Italien ist mit der Università degli Studi di Trento – Prof. Dr. Michael Dumbser (Dipartimento di Ingegneria Civile Ambientale e Meccanica) beteiligt, Großbritannien mit der Durham University – Dr. Tobias Weinzierl (School of Engineering and Computing Sciences). Komplettiert wird das Konsortium durch den russischen Supercomputer-Hersteller ZAO "RSC Technologies" – Alexander Moskovsky (CEO).

Bildmaterial in hoher Auflösung finden Sie unter http://www.bayfor.org/de-exahype.

Zur Bayerischen Forschungsallianz GmbH (BayFOR)
Die Bayerische Forschungsallianz hat das ExaHyPE-Konsortium bei der Antragstellung umfassend unterstützt und bei der Vertragsvorbereitung mit der EU-Kommission begleitet. Im laufenden Projekt übernimmt sie das Projektmanagement sowie die Verbreitung der wissenschaftlichen Ergebnisse. Die BayFOR berät und unterstützt bayerische Akteure aus Wissenschaft und Wirtschaft umfassend beim Einwerben von europäischen Mitteln für Forschung, Entwicklung und Innovation mit dem Ziel, den Wissenschafts- und Innovationsstandort Bayern im Forschungsraum Europa fortzuentwickeln. Der Schwerpunkt liegt dabei auf dem Rahmenprogramm für Forschung und Innovation, Horizon 2020. Als Partner im Enterprise Europe Network bietet sie zudem gezielte Beratung und Unterstützung für bayerische Unternehmen, insbesondere KMU, die sich für eine Teilnahme an EU-Forschungs- und Innovationsprojekten interessieren. Die BayFOR ist eine Partner-Organisation im bayerischen Haus der Forschung (http://www.hausderforschung.bayern.de) und wird vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst gefördert. Weitere Informationen finden Sie unter http://www.bayfor.org.

Kontakt in der BayFOR
Emmanuelle Rouard
Bereichsleiterin Presse- & Öffentlichkeitsarbeit
Tel.: +49 (0)89 9901888-111
E-Mail: rouard@bayfor.org

Weitere Informationen:

http://www.exahype.eu
http://www.bayfor.org
http://www.bayfor.org/de-exahype
http://www.hausderforschung.bayern.de

Anita Schneider | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Volle Konzentration am Steuer
25.11.2016 | Leibniz-Institut für Arbeitsforschung an der TU Dortmund

nachricht Warum Reibung von der Zahl der Schichten abhängt
24.11.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie