Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Zweig im Stammbaum der Bilateria: Großrechner erobern die Evolutionsbiologie

30.10.2009
Tiere, deren Organismus symmetrisch aufgebaut ist, werden dem Stammbaum der Bilateria zugerechnet, auch der Mensch gehört dazu. Doch wie haben sich die einzelnen Tierarten aus ihren Urformen entwickelt?
Bisher scheiterte die Berechnung von Stammbäumen aus Erbgutsequenzen an der dafür notwendigen Rechenleistung. Wissenschaftler der Technischen Universität München (TUM) haben nun Programme entwickelt, die Supercomputer in die Lage versetzen, diese Berechnungen durchzuführen. Nun können sie einen ersten großen Erfolg vorweisen.

Seit die Analyse von Erbgut durch moderne biochemische Methoden kostengünstig möglich ist, träumen Forscher davon, über den Vergleich von Erbgutsequenzen die evolutionäre Entwicklung von Tierarten rekonstruieren zu können. Bereits bessere Laborcomputer können Genanalysen durchführen. Doch für die Analyse ganzer Stammbäume ist ihre Rechenleistung zu gering. Im Rahmen einer internationalen Forschungskooperation entwickelte eine Gruppe um Bioinformatiker Dr. Alexandros Stamatakis bestehende Software-Werkzeuge so weiter, dass die notwendigen Berechnungen nun auf Höchstleistungsrechnern durchgeführt werden können.

“Mit den in den Laboren verfügbaren Rechnern ist es nicht möglich, Stammbäume aus größeren Erbgutsequenzen zu berechnen, aber für Supercomputer waren die Rechenprogramme der Evolutionsbiologen nicht geeignet,“ erläutert Michael Ott, Doktorand im Team von Stamatakis. Höchstleistungsrechner wie der des Garchinger Leibniz-Rechenzentrums schöpfen ihre Rechenleistung aus einer Vielzahl parallel arbeitender Prozessoren. Stamatakis und sein Team erweiterten daher ein Analyseprogramm so, dass es die Rechenaufgaben nun auf viele Prozessoren verteilen und die Ergebnisse wieder zusammenfügen kann. Die TUM-Wissenschaftler haben damit ein Programm geschaffen, das Evolutionsbiologen auf der ganzen Welt frei zur Verfügung steht, um ihre Forschung voran zu treiben.

Als ersten Testkandidaten wählten Kollegen an der Brown University in Providence (USA) einen nur zwei Millimeter großen Wurm mit dem Namen Acoelomorpha aus. Seine evolutionären Wurzeln waren für die Wissenschaft bisher ein Rätsel. Am Ende der umfangreichen Analyse konnten die Forscher dem Wurm jedoch eine Heimat im Stammbaum der Tiere zuweisen – an der ersten Verzweigung innerhalb der Gruppe der Bilateria. „Acoelomorpha ist von uns so weit entfernt wie ein Tier der Bilateria es nur sein kann, aber es ist bilateral. Das konnten wir nun beweisen,” sagt Professor Casey Dunn, Evolutionsbiologe der Brown University.

Zur Entwicklung ihres Programms nutzten Stamatakis und sein Team den Garchinger Höchstleistungsrechner. Die endgültige Rechnung für Acoelomorpha wurde auf einem BlueGene Rechner in den USA durchgeführt. Mit 2,25 Millionen Prozessorstunden war dies die aufwändigste je durchgeführte Stammbaumanalyse. Nun arbeiten die Wissenschaftler an noch umfangreicheren Berechnungen und der weiteren Optimierung der Software, so dass das große Ziel – Stammbaumanalysen mit vielen Organismen unter Verwendung kompletter Genome – immer näher rückt. Die Anwendung der Software ist dabei nicht auf den Stammbaum der Bilateria beschränkt, das Prinzip ist für alle Lebewesen anwendbar.

Auf deutscher Seite wurde das Projekt vom KONWIHR und von der DFG unterstützt. Die Rechnungen wurden im San Diego Supercomputing Center durchgeführt.

Originalpublikation:
Andreas Hejnol, Matthias Obst, Alexandros Stamatakis, Michael Ott, Greg W. Rouse, Gregory D. Edgecombe, Pedro Martinez, Jaume Baguñà, Xavier Bailly, Ulf Jondelius, Matthias Wiens, Werner E. G. Müller, Elaine Seaver, Ward C. Wheeler, Mark Q. Martindale, Gonzalo Giribet and Casey W. Dunn
Assessing the root of bilaterian animals with scalable phylogenomic methods
Proceedings of the Royal Society B, Online, 16. September 2009
DOI: doi: 10.1098/rspb.2009.0896
http://rspb.royalsocietypublishing.org/content/early/2009/09/15/rspb.2009.0896.abstract


Kontakt:
Dr. Alexandros Stamatakis
Lehrstuhl für Bioinformatik (I 12)
Technische Universität München
Boltzmannstr. 3, 85748 Garching
Tel: +49 89 28919434, Fax: +49 89 28919414
E-Mail: stamatak@cs.tum.edu

Die Technische Universität München (TUM) ist mit rund 440 Professorinnen und Professoren, 6.500 Mitarbeiterinnen und Mitarbeitern (einschließlich Klinikum rechts der Isar) und 24.000 Studierenden eine der führenden technischen Universitäten Europas. Ihre Schwerpunktfelder sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften, Medizin und Wirtschaftswissenschaften. Nach zahlreichen Auszeichnungen wurde sie 2006 vom Wissenschaftsrat und der Deutschen Forschungsgemeinschaft zur Exzellenzuniversität gewählt. Das weltweite Netzwerk der TUM umfasst auch eine Dependance in Singapur. Die TUM ist dem Leitbild einer unternehmerischen Universität verpflichtet.

Ursula Eschbach | Technische Universität München
Weitere Informationen:
http://www.in.tum.de
http://wwwkramer.in.tum.de/exelixis/

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht »Lernlabor Cybersicherheit« startet in Weiden i. d. Oberpfalz
12.01.2017 | Fraunhofer-Gesellschaft

nachricht Klick-Tagebuch: App-Projekt der HdM erlaubt neuen Ansatz in Entwicklungsforschung
11.01.2017 | Hochschule der Medien Stuttgart

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltweit erste Solarstraße in Frankreich eingeweiht

16.01.2017 | Energie und Elektrotechnik

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie