Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Speicher sichert Daten für 100 Mio. Jahre

28.09.2012
Hitachis Quarzglas-Diskette praktisch unzerstörbar

Der japanische Hightech-Konzern Hitachi in Tokio einen neuartigen Datenspeicher aus Quarzglas präsentiert, wie phys.org berichtet. Das extrem widerstandsfähige Material soll die sichere Verwahrung digitaler Information über Zeiträume bis zu 100 Mio. Jahren ermöglichen.


Quarzglas: hervorragender Langzeit-Speicher (Foto: pixelio.de, cc Jürgen Schuy)

Quarzglas ist wasserfest, hitzebeständig und unempfindlich gegenüber vielen Chemikalien. Lediglich ein Brechen der extrem harten Speicherplatte würde zu Datenverlust führen. Der vorgestellte quadratische Prototyp misst zwei mal zwei Zentimeter und ist nur zwei Millimeter dick. Die Daten werden mit einem Laser in Form von Binärcode als Punkte in das Quarzglas geschrieben.

Leicht lesbar

"Derzeit gibt es keine einfache, zufriedenstellende Lösung zur physikalischen Speicherung von Daten. Dieses System hat den Nachteil, dass es nur einmal beschrieben werden kann. Zudem muss die Übersetzung von Binärcode in Zeichen bekannt sein, um die Daten lesen zu können. Die Quarzglasspeicher machen nur Sinn, wenn Daten einmal digitalisiert und dann für lange Zeit archiviert werden sollen, etwa zur Aufbewahrung von Krypto-Keys oder als Mikrofilm-Ersatz. Für die breite Masse sehe ich weniger sinnvolle Anwendungen, für die Urlaubsfotos wird das Preis-Leistungs-Verhältnis wohl nicht reichen", sagt Nicolas Ehrschwendner, Geschäftsführer bei Attingo Datenrettung http://attingo.com , gegenüber pressetext.

Der Prototyp der Quarzglas-Diskette enthält vier Speicher-Schichten aus lasergeschriebenen Punkten, was in etwa der Datendichte pro Fläche einer CD entspricht. Die Entwickler sind aber überzeugt, dass sie ohne Probleme weitere Schichten hinzufügen können, was die Kapazität stark erhöhen würde. Zum Auslesen der Daten genügen ein optisches Mikroskop und ein Computer, der mit Binärcode umgehen kann. Ein entsprechendes Programm ist sehr einfach herzustellen und sollte auch in ferner Zukunft auf womöglich anders funktionierenden Computern leicht zu realisieren sein.

Langfristige Lösung

Die beteiligten Wissenschaftler sagen, dass die Technologie bereits für einen praktischen Einsatz zur Verfügung steht. Sie könnten sofort beginnen, Daten für Regierungen und andere Organisationen zu sichern. Hitachi ist aber noch unschlüssig, wann die Technologie in Serie produziert werden soll. In Tests wurden die Speicherplättchen zwei Stunden lang auf über 1.000 Grad erhitzt, ohne dass eine Änderung im Speicher beobachtet werden konnte. Gegen Strahlung und chemische Einflüsse ist Quarzglas ohnehin unempfindlich. Die Daten halten sich auf den durchsichtigen Quadraten praktisch ewig.

"Unabhängigkeit von Magnetismus ist durchaus wertvoll. Bombenangriffe und Sonnenstürme können den Daten so nichts anhaben. Die Datendichte von 40 Megabyte pro Quadratinch halte ich nicht für sehr beeindruckend. Ob und wann das Produkt in Massenfertigung geht, bleibt fraglich", sagt Ehrschwendner. Die verantwortlichen Forscher glauben trotzdem an ihr Produkt.

"Die Menge an Daten, die täglich produziert wird, explodiert. Was die langfristige Aufbewahrung angeht, haben wir seit der Zeit der Steingravur nicht notwendigerweise dazugelernt. Die Gefahr von Datenverlust wächst sogar, durch wechselnde, manchmal inkompatible Technologien. Unsere Lösung garantiert lesbare Daten für eine sehr lange Zeit", sagt Chef-Entwickler Kazuyoshi Torii.

Markus Keßler | pressetext.redaktion
Weitere Informationen:
http://hitachi.com hat

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Datenbrille erleichtert Gehörlosen die Arbeit in der Lagerlogistik
23.02.2018 | Technische Universität München

nachricht Verlässliche Quantencomputer entwickeln
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics