Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Fortschritt in der Quantenkommunikation: Physiker realisieren einen stabilen "Quanten-Repeater"

28.08.2008
Heute in "Nature": Wissenschaftlern der Universität Heidelberg, der University of Science and Technology of China und der TU Wien ist ein weiterer großer Schritt auf dem Weg zur Realisierung von Quantenkommunikation über große Distanzen gelungen

In ihren Experimenten konnten sie einen stabilen "Quantenrepeater" (in etwa: Quanten-Umsetzer) realisieren, der das Potential hat, in zukünftigen Quantenkommunikations-Netzwerken als zentraler Baustein zu dienen. Will man Daten über große Entfernungen übertragen, muss man der unvermeidbaren Abschwächung durch Verstärkung des übermittelten Signals entgegenwirken. Diese Regeneration des übermittelten Signals wird bei klassischer Kommunikation in so genannten Repeaterstationen durchgeführt.


In einem Quantennetzwerk befinden sich zwei benachbarte Atomensembles, die als Kommunikationsknoten dienen und jeweils mit einzelnen Photonen verschränkt sind. Die ultrakalten Atome, die als Quantenspeicher dienen, werden mittels Laserlichtkühlung durch magneto-optische Fallen in ultrahochvakuumtauglichen Glaszellen bereit gestellt. Die beiden Ensembles werden in einen gemeinsamen verschränkten Zustand überführt, indem eine gemeinsame Bell-Zustandsmessung an den beiden Einzelphotonen stattfindet. Der verschränkte Zustand der Atomensembles kann für weitere Verbindungen wieder ausgelesen werden. Der Helligkeitsverlauf der roten Lichtleiter gibt den Photonenverlust wieder. Der Glaswürfel ist ein so genannter polarisierender Strahlteiler (PBS), der für die kollektive Bell-Messung benötigt wird. Grafik: Julia Gless

Wenn Quanteninformation übermittelt werden soll, verhindern die gleichen fundamentalen Prinzipien der Quantenphysik, die Quantenkommunikation absolut sicher machen, eine solche Verstärkung, ohne dass dabei die übermittelte Information verloren geht.

In der Ausgabe vom 28. August des Wissenschaftsmagazins "Nature" berichten Professor Jian-Wei Pan und seine Kollegen über die Realisierung eines stabilen Quantenrepeaters, und demonstrieren erstmalig einen Verschränkungs-Austausch mit dem Speichern und Auslesen von Licht. In dem Experiment wurde Quantenverschränkung, ein essentieller Bestandteil von Quanteninformationsverarbeitung, zwischen zwei räumlich getrennten, durch ein 300 Meter langes Glasfaserkabel verbundenen Atomensembles erzeugt. Die gespeicherten verschränkten Quantenzustände wurden nach einer festgelegten Speicherzeit auf Photonen übertragen und dadurch verifiziert.

Der sichere Austausch von Information ist ein wichtiger Eckpfeiler unserer Informationsgesellschaft. Quantenkommunikation, die Übermittlung von Daten codiert in Quantenbits, basiert auf den Gesetzen der Quantenmechanik und bietet eine effiziente und absolut sichere Methode, Informationen in einem Netzwerk auszutauschen. Zurzeit beschränken unvermeidbare Verluste (Absorption der Photonen im Kommunikationskanal) die Reichweite von Quantenkommunikation. Daher wächst die Anzahl der benötigten Ressourcen exponentiell mit der Distanz.

Um dieses Problem zu lösen, schlugen 1998 Briegel, Dür, Cirac und Zoller (BDCZ) vor, Quantenrepeater zu bauen. Die Grundidee dabei ist, den Kommunikationskanal in mehrere kurze Segmente zu unterteilen. Die Verschränkung wird nun zuerst in hoher Qualität in den kurzen Segmenten aufgebaut. Anschließend werden diese durch einen so genannten Verschränkungstausch verbunden. Die benötigten Ressourcen dieses Quantenkommunikationsprotokolls wachsen deutlich langsamer mit zunehmender Kommunikationsdistanz als bei früheren Protokollen und sind damit praktisch umsetzbar. Dies setzt voraus, dass die in den Zwischenstufen erzeugte Verschränkung in einem Quantenspeicher konserviert werden kann.

In der Verbindung des BDCZ-Protokolls mit Quantenspeichern liegt die zentrale Herausforderung. Dies wurde innerhalb dieser Arbeit durch die Realisierung eines funktionellen BDCZ-Quantenrepeaters erfolgreich demonstriert.

Im Experiment werden zuerst zwei Ensembles von je einer Million ultrakalter Atome mit einer Temperatur von 100 MikroKelvin (-273,15 °C) in zwei magneto-optischen Fallen erzeugt. In jedem Ensemble wird dann durch einen Raman-Streuprozess ein gemeinsamer Quantenzustand der Atome mit jeweils einem Photon verschränkt. Im Folgenden werden die Ensembles in einen verschränkten Zustand überführt, indem eine gemeinsame Bell-Zustandsmessung an den beiden einzelnen Photonen durchgeführt wird, der so genannte Verschränkungstausch. Dazu werden diese Photonen zuvor durch eine 300 Meter lange Glasfaser geleitet. Die so erzeugte Verschränkung ist nun in den Atomen gespeichert und kann später ausgelesen, verifiziert und weiter verwendet werden, indem man den atomaren Quantenzustand wieder auf neue Photonen überträgt.

Die hier demonstrierte Methode, Verschränkung durch eine gemeinsame Bell-Messung an den Photonen zu erzeugen, ist intrinsisch robust; im speziellen ist sie unabhängig von deren Phase, und deswegen kaum empfindlich auf Längenänderungen im Kommunikationskanal. Dies ist essentiell, um Verschränkung und Verschränkungsverbindung zwischen Quantenspeichern über lange Strecken zu ermöglichen, beides zentrale Elemente eines funktionstüchtigen Quantenrepeaters mit stationären atomaren QuBits als Quantenspeicher und fliegenden photonischen QuBits als Quanten-Nachrichtenträger.

Die Autoren gehen davon aus, dass die experimentell demonstrierten Elemente zu einem Quantennetzwerk erweitert werden können; für eine robuste Anwendung müssen aber Qualität des Quantenspeichers und Atom-Photon-Verschränkung noch signifikant verbessert werden.

Originalarbeit:
Zhen-Sheng Yuan, Yu-Ao Chen, Bo Zhao, Shuai Chen, Jörg Schmiedmayer, Jian-Wei Pan, Experimental demonstration of a BDCZ quantum repeater node, Nature, DOI: 10.1038/nature07241.
Kontakt:
Prof. Dr. Jian-Wei Pan oder
Dr. Yu-Ao Chen
Physikalisches Institut
Ruprecht-Karls-Universität Heidelberg
Philosophenweg 12, D-69120 Heidelberg
Tel. +49-6221-549374, Fax +49-6221-475733
jian-wei.pan@physi.uni-heidelberg.de
yuao@physi.uni-heidelberg.de

Dr. Michael Schwarz | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits
15.12.2017 | Forschungszentrum Jülich GmbH

nachricht Neues Epidemie-Management-System bekämpft Affenpocken-Ausbruch in Nigeria
15.12.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik