Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Methoden zur realistischen Oberflächendarstellung in Computerspielen

04.05.2015

Das Aussehen von Objektoberflächen in Computerspielen wirkt oft unnatürlich. Eine neue Rechenmethode ahmt die komplizierte Streuung des Lichts im Material nach und ermöglicht dadurch erheblich realistischere Bilder.

Autos überschlagen sich, Geschosse fliegen umher und ein Flugzeug rast quer über den Bildschirm. Dreidimensionale Objekte lassen sich mit heutigen Computern blitzschnell berechnen. Unnatürlich sahen bisher allerdings die Oberflächen verschiedener Materialien aus.


links: die neue Methode; rechts oben: ohne Subsurface Scattering; rechts unten: mit Subsurface Scattering

TU Wien

Egal ob Haut, Stein oder Wachs – am Computerbild wirkt jedes Objekt als hätte man es aus demselben Material geschnitten. Das soll sich nun ändern. Die TU Wien, die Universität Saragossa und der Spielehersteller Activision-Blizzard haben nun eine mathematische Methode entwickelt, die Oberflächen realistisch erscheinen lässt. Sie berücksichtigt, dass das Licht in das Material eindringt und dadurch verändert wird. (Video: siehe unten)

Das Licht, das aus der Tiefe kommt

Wenn wir unsere Finger gegen die Sonne halten, sehen sie am Rand rot aus, weil das Licht in unsere Haut eindringen kann. Das Aussehen eines Objektes wird stark von der Lichtstreuung in tieferliegenden Bereichen bestimmt. „Man spricht von Sub-Surface-Scattering oder Volumenstreuung“, erklärt Christian Freude, der gemeinsam mit Károly Zsolnai, Thomas Auzinger und Michael Wimmer am Institut für Computergraphik und Algorithmen der TU Wien an der neuen Rendering-Methode forscht.

„Genau diese Streuung im Inneren des Materials ist maßgeblich dafür verantwortlich, dass unterschiedliche Oberflächen für uns so unterschiedlich aussehen. Haut sieht anders aus als Wachs und eine Pflanze wirkt ganz anders als eine Steinoberfläche“, sagt Christian Freude.

Besonders die Darstellung von Haut stellt sich aus diesem Grund als kompliziert heraus. Man kann heute ein Gesicht am Computer hochauflösend und realistisch darstellen – bis hin zu feinen Poren und winzigen Unebenheiten. Doch so richtig realistisch wirkt Haut deshalb noch lange nicht. Wenn man die Lichtstreuung unter der Oberfläche nicht berücksichtigt, sieht auch ein perfekt gerendertes Gesicht aus wie aus mattem, undurchsichtigem, hautfarbenem Stein gemeißelt.

Die Rechenzeit ist das Problem

„Grundsätzlich kann man natürlich die Streuung des Lichts unter der Oberfläche physikalisch präzise ausrechnen“, sagt Christian Freude. „Doch muss man dafür unzählige Lichtstrahlen simulieren, und es kann Stunden dauern, ein einzelnes Bild zu berechnen.“ Das Forschungsteam von der TU Wien, der Universität Saragossa und der Firma Activision-Blizzard untersuchten daher, wie sich einfachere Methoden finden lassen, die einen ähnlichen Effekt in Sekundenbruchteilen erzielen. So entstand nun die „SSSS-Methode“ (Separable Subsurface Scattering).

Die Grundidee für die neue Methode stammt von Jorge Jimenez von der Firma Activision-Blizzard. Er entwickelte ein ähnliches Verfahren speziell für menschliche Haut. „Wir haben nun die mathematischen Grundlagen geschaffen um beliebige Materialien realistisch darzustellen, zum Beispiel Marmor, Wachs oder Pflanzen“, sagt Prof. Wimmer.

„Zunächst berechnet man die Streuung eines einzelnen Lichtstrahls unter der Oberfläche, um daraus ein einfaches Filterprofil zu erstellen, das man dann immer wieder auf die Bilder anwenden kann“, sagt Christian Freude. „Das Computerbild wird also zunächst mit den herkömmlichen Methoden generiert, um es danach mit unserer SSSS-Methode zu bearbeiten, was die richtige Oberflächendarstellung und –qualität hervorbringt.“

„Wir haben nach einer eleganten Lösung gesucht, die basierend auf einem bereits berechneten Bild arbeiten kann. Die endgültige Version unserer Methode benötigt in Full-HD Auflösung auf normaler Hardware nur eine halbe Millisekunde pro Bild“, sagt Károly Zsolnai. Damit kann trotzdem noch eine flüssig ablaufende Bewegung dargestellt werden.

„Es gab schon andere Versuche, Subsurface Scattering in Echtzeit-Renderings zu berücksichtigen, doch bisher war die Rechenzeit oft zu lange für die praktische Anwendung“, sagt Christian Freude. „Wir konnten die Bearbeitung einer zweidimensionalen Oberfläche auf zwei eindimensionale Berechnungen zurückführen, das spart Rechenzeit und liefert trotzdem überzeugende Ergebnisse.“ „Diese Reduktion der Dimensionalität wurde mit verschiedenen mathematischen Methoden erzielt, die von exakter Integration, über numerische Optimierungsroutinen bis hin zu benutzergesteuerter Farbprofilmodellierung reichen“, ergänzt Thomas Auzinger.

Activision-Blizzard verwendet die neue Methode bereits. Das Team geht davon aus, dass die SSSS-Methode in Zukunft auch in vielen anderen Anwendungen zu finden sein wird. Im Journal „Computer Graphics Forum“ wird die neue Methode vorgestellt, damit ist sie nun auch für andere Anwender nutzbar.

Rückfragehinweise:

Dipl.-Ing. Christian Freude
Institut für Computergraphik und Algorithmen
TU Wien
Favoritenstr. 9-11, 1040 Wien
T:+43-1-58801-18642
christian.freude@tuwien.ac.at

MSc. Károly Zsolnai
Institut für Computergraphik und Algorithmen
TU Wien
Favoritenstr. 9-11, 1040 Wien
T:+43-1-58801-18657
karoly.zsolnai@tuwien.ac.at

Weitere Informationen:

https://www.youtube.com/watch?v=P0Tkr4HaIVk Video
https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2015/ssss weitere Bilder
http://cg.tuwien.ac.at/~zsolnai/gfx/separable-subsurface-scattering-with-activis... nähere Information

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht KogniHome feiert die Wohnung der Zukunft
26.06.2017 | Universität Bielefeld

nachricht Der Form eine Funktion verleihen
23.06.2017 | Institute of Science and Technology Austria

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie