Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuartige Kommunikationslaser auf Siliziumbasis sollen Datenflut in Rechenzentren bewältigen

25.02.2015

Ein Forschungsteam der Universität Kassel entwickelt einen neuartigen Quantenpunkt-Laser mit. Er soll preiswerter als herkömmliche Halbleiter-Laser sein, viermal mehr Daten als bisher möglich übertragen, in Rechenzentren Energiekosten sparen und längere Übertragungsdistanzen erreichen.

Im Rahmen des mit 3,3 Millionen Euro von der EU geförderten und auf drei Jahre angelegten Verbund-Forschungsprojekts Sequoia wird das Team unter Leitung von Prof. Dr. Johann Peter Reithmaier vom Fachgebiet Technische Physik der Universität Kassel bis Ende 2016 mit Partnern aus Frankreich und Dänemark zwei Demonstratoren bauen, die eine Datenmenge von bis zu 400 Gigabit pro Sekunde in einer einzigen Glasfaser übertragen und Lichtwellen – das Datentransportmedium – in größerer Bandbreite und exakter modulieren können. 590.000 Euro fließen für diese Forschung nach Kassel.


Wafer in einem Waferhalter.

Foto: Uni Kassel

Derzeit bewältigen die für den Datentransport in Rechenzentren eingesetzten Übertragungssysteme maximal 100 Gigabit pro Sekunde pro Glasfaser. Dieses Tempo hält mit der rasant wachsenden Datenflut im Internet nicht mit, und das erhöht die Kosten erheblich: Internetdienstleister schalten in ihren Rechenzentren viele Tausend Server mit riesigen Kabelsträngen in so genannten Racks zusammen, die so groß wie Fußballfelder sein können. Die an den Datenpunkten eingesetzte Elektronik (inklusive der Laser) benötigt viel elektrischen Strom.

„Ein Rechenzentrum kann in Zukunft so viel verbrauchen wie ein halbes Atomkraftwerk“, sagt Prof. Reithmaier. Außerdem erzeugen diese Laser viel Wärme. Das System muss aufwendig gekühlt werden. Energiesparende Innovationen sind deshalb unabdingbar, um das Wachstum von Internetanwendungen nicht zu begrenzen.

Die Kasseler Forscher optimieren im Rahmen des Projekts nanotechnisch die Architektur der Halbleiterlaser, reduzieren ihren Energiebedarf sowie ihre Wärmeabstrahlung und ersetzen die sehr teuren Halbleitermaterialien wie beispielsweise Indiumphosphit weitgehend durch das vergleichsweise preiswerte Silizium.

Halbleiterlaser funktionieren, indem sie elektrische Energie besonders effizient in Licht umwandeln. Durch die Modulation von Bandbreite, Stärke und Länge der ausgestrahlten Lichtwellen lassen sich Daten in großer Menge übertragen. Diese Modulation wird im Wesentlichen durch eine besondere nanoskopische Struktur aus Halbleitermaterial gesteuert. In diesen sogenannten, nur maximal 20 Nanometer großen, Quantenpunkten werden elektrische Ladungsträger gewissermaßen „gefangen“ und zur Lichtaussendung gezwungen.

„Je mehr Quantenpunkte man erzeugt und je geringer die Größenabweichungen sind, desto größere Übertragungsgeschwindigkeiten und Modulationsbreiten erreicht man. In dem für die Langstreckenübertragung wichtigen Wellenlängenbereich von 1,5 Mikrometern sind wir momentan weltweit führend“, erklärt Prof. Reithmaier. Durch das Stapeln von wenige Nanometer dicken Schichten aus Halbleitermaterial erzielt sein Forscherteam komplexe und homogene Strukturen, die Milliarden unterschiedlich großer Quantenpunkte enthalten, und das auf einem nur wenige Quadratmillimeter großen Chipsatz. Die Verwendung von winzigen Siliziumscheiben, statt eines teureren Halbleitermaterials als Substrat, stellt die Forscher vor besondere Herausforderungen. „Silizium ist optisch tot“, sagt Reithmaier.

Die Forschungsverbund-Partner haben jedoch ein Verfahren entwickelt, bei dem das optisch aktivierbare Halbleitermaterial separat hergestellt wird und hauchdünn mit dem sogenannten „Molecular Bonding“ auf Silicium übertragen werden kann. Die Verbindungsfläche muss völlig glatt sein. Die Unebenheiten müssen weniger als 0.5 Nanometer betragen, wenn das funktionieren soll. „Dieses Bonding müssen wir noch besser in den Griff bekommen“, sagt Reithmaier.

Bild (Foto: Uni Kassel) unter:
http://www.uni-kassel.de/uni/fileadmin/datas/uni/presse/anhaenge/2015/INA_4017b....
Bildunterschrift: Wafer in einem Waferhalter.

Bild von Prof. Dr. Johann Peter Reithmaier (Foto: Uni Kassel) unter:
http://www.uni-kassel.de/uni/fileadmin/datas/uni/presse/anhaenge/2015/Reithmaier...

Kontakt:

Prof. Dr. Johann Peter Reithmaier
Universität Kassel
Institut für Nanostrukturtechnologie und Analytik
Fachgebiet Technische Physik
Tel.: 0561 804-4430
E-Mail: teph-sekretariat@ina.uni-kassel.de

Weitere Informationen:

http://www.uni-kassel.de/uni/nc/universitaet/nachrichten/article/schneller-und-k...

Sebastian Mense | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Schnelle Time-to-Market durch standardisierte Datacenter-Container
28.03.2017 | Rittal GmbH & Co. KG

nachricht Modellfabrik Industrie 4.0: Forschungs- und Trainingsplattform für Wissenschaft und Wirtschaft
28.03.2017 | Hochschule Konstanz

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit