Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nervengeflechte in 3D

26.04.2011
Am Goethe-Zentrum für wissenschaftliches Rechnen rekonstruieren Forscher die Ausbreitung von Signalen in einzelnen Zellen

Wer den Keller des Goethe-Zentrums für wissenschaftliches Rechnen betritt, glaubt sich im ersten Moment in der „special effects“ Abteilung eines Filmproduzenten. Der Raum ist schwarz und wird, wie im Kino, von einer großen Leinwand dominiert.

Der Zuschauer setzt eine 3D-Brille auf, die mit Referenzpunkten ausgestattet ist, so dass der Computer genau weiß, wo sich der Betrachter befindet. Ein „Spezialbeamer“ projiziert nun das filigrane und komplex verknüpfte Netzwerk von Nervenzellen aus dem Hippocampus einer Ratte. Doch in dieser „Dreamfactory“ erscheint sie nicht nur in 3D. Der Zuschauer kann das Bild auch noch mithilfe eines „Joysticks“ in alle Raumrichtungen drehen, und sogar direkt in das Geflecht aus bläulich schimmernden Nervenfasern hineingehen.

Dass die Bilder so täuschend echt aussehen, ist kein Zufall. Die zugrunde liegenden Daten stützen sich auf Mikroskopie-Aufnahmen, welche die Arbeitsgruppe von Prof. Gabriel Wittum am Goethe-Zentrum für wissenschaftliches Rechnen von kooperierenden Medizinern erhalten hat. Die Kunst besteht nun darin, aus den dreidimensionalen Voxeln der Mikroskopie-Aufnahme im Computer ein Gitter zu generieren, das die Struktur des aufgenommenen Objekts realistisch darstellt. Das Team aus Mathematikern und Informatikern nutzt Techniken aus der Bildverarbeitung, um dem Compter „beizubringen“, wie er Zellstrukturen erkennt. Der von Wittums Gruppe 2005 entwickelte „Neuronen Rekonstruktionsalgorithmus NeuRA“ bereitet mikroskopisch gewonnene Rohdaten so auf, dass der Rechner daraus Detail getreue „mathematische Zellen“ macht.

Die wissenschaftlichen Fragen, die Prof. Wittum und Juniorprofessor Gillian Queisser mit diesem Ansatz verfolgen, kommen aus der Neurobiologie. „Es gibt verschiedene Wege, sich der Komplexität des Nervensystems zu nähern“, erläutert Queisser. „In unserer interdisziplinären Gruppe aus Mathematikern und Informatikern haben wir uns vorgenommen, die Signalverarbeitung in einzelnen Nervenzellen und kleinen Netzwerken so realitätsgetreu wie möglich zu modellieren.“

Sobald man aber die vereinfachten Modell-Strukturen der Nervenzelle gegen realistische eintauscht, ergeben sich zahlreiche neue Herausforderungen. Zunächst einmal mussten die Wissenschaftler ein 3D-Modell für die Ausbreitung elektrischer Signale in einem dreidimensionalen Gitter entwickeln. „Damit wurde es erstmals möglich, ein Aktionspotential auf der Zellmembran in Zeitlupe zu verfolgen. Zusätzlich konnten wir auch den Raum innerhalb und außerhalb der Zelle erfassen“, so Konstantinos Xylouris aus der Arbeitsgruppe von Wittum, der an der Entwicklung des Algorithmus maßgeblich beteiligt war.

Durch diese Erfolge ermutigt, drang das Forscherteam weiter vor bis zum Zellkern. In der klassischen Lehrbuchdarstellung ist der Kern immer rund. Aber Aufnahmen von Zellkernen aus dem kooperierenden Labor von Prof. Hilmar Bading in Heidelberg zeigten, dass die Membran des Zellkerns auch auf unterschiedliche Weise eingefaltet sein kann. Welchen Vorteil hat die Zelle davon, die energetisch günstigste Form aufzugeben? Die Antwort fanden die Wissenschaftler, indem sie Kerne aus Hunderten von Gewebeproben mit NeuRA erfassten und das Verhalten von Kalzium-Signalen in unterschiedlich geformten Kernen untersuchten. Im Zusammenspiel von Simulation und Experiment konnten sie zeigen, dass die Zelle durch die Veränderung ihrer Kernmorphologie Kalzium-Signale verändern kann. So sind eingefaltete Zellkerne gut geeignet, hochfrequente Kalzium-Signale aufzulösen, wohingegen nicht eingefaltete Kerne ein ankommendes hochfrequentes Signal integrieren.

Das Fazit der Forscher: Das Zusammenspiel zwischen Morphologie und Signalverarbeitung ist ein wesentlicher Bestandteil zellulärer Funktionalität. Will man das Spektrum dieser Interaktionen von einem Modell abdecken, muss dieses die detaillierte Morphologie von Zellen beinhalten.

Forschung Frankfurt kostenlos bestellen:
Ott@pvw.uni-frankfurt.de
Informationen: Junior-Prof. Gillian Queisser, Goethe-Zentrums für wissenschaftliches Rechnen, Campus Bockenheim, Tel: (069) 798-25282; Mobil: 0151-15171553; Gillian.Queisser@gcsc.uni-frankfurt.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn drittmittelstärksten und größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Parallel dazu erhält die Universität auch baulich ein neues Gesicht. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht ein neuer Campus, der ästhetische und funktionale Maßstäbe setzt. Die „Science City“ auf dem Riedberg vereint die naturwissenschaftlichen Fachbereiche in unmittelbarer Nachbarschaft zu zwei Max-Planck-Instituten. Mit über 55 Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität laut Stifterverband eine Führungsrolle ein.

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Telefon (069) 798 – 2 92 28, Telefax (069) 798 - 2 85 30, E-Mail hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de
http://www.forschung-frankfurt.uni-frankfurt.de/2011/index.html

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Neues Sensorsystem sorgt für sichere Ernte
23.10.2017 | Universität Bielefeld

nachricht IT-Sicherheitslücken – Gefahr für die Produktionstechnik
23.10.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie