Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nervengeflechte in 3D

26.04.2011
Am Goethe-Zentrum für wissenschaftliches Rechnen rekonstruieren Forscher die Ausbreitung von Signalen in einzelnen Zellen

Wer den Keller des Goethe-Zentrums für wissenschaftliches Rechnen betritt, glaubt sich im ersten Moment in der „special effects“ Abteilung eines Filmproduzenten. Der Raum ist schwarz und wird, wie im Kino, von einer großen Leinwand dominiert.

Der Zuschauer setzt eine 3D-Brille auf, die mit Referenzpunkten ausgestattet ist, so dass der Computer genau weiß, wo sich der Betrachter befindet. Ein „Spezialbeamer“ projiziert nun das filigrane und komplex verknüpfte Netzwerk von Nervenzellen aus dem Hippocampus einer Ratte. Doch in dieser „Dreamfactory“ erscheint sie nicht nur in 3D. Der Zuschauer kann das Bild auch noch mithilfe eines „Joysticks“ in alle Raumrichtungen drehen, und sogar direkt in das Geflecht aus bläulich schimmernden Nervenfasern hineingehen.

Dass die Bilder so täuschend echt aussehen, ist kein Zufall. Die zugrunde liegenden Daten stützen sich auf Mikroskopie-Aufnahmen, welche die Arbeitsgruppe von Prof. Gabriel Wittum am Goethe-Zentrum für wissenschaftliches Rechnen von kooperierenden Medizinern erhalten hat. Die Kunst besteht nun darin, aus den dreidimensionalen Voxeln der Mikroskopie-Aufnahme im Computer ein Gitter zu generieren, das die Struktur des aufgenommenen Objekts realistisch darstellt. Das Team aus Mathematikern und Informatikern nutzt Techniken aus der Bildverarbeitung, um dem Compter „beizubringen“, wie er Zellstrukturen erkennt. Der von Wittums Gruppe 2005 entwickelte „Neuronen Rekonstruktionsalgorithmus NeuRA“ bereitet mikroskopisch gewonnene Rohdaten so auf, dass der Rechner daraus Detail getreue „mathematische Zellen“ macht.

Die wissenschaftlichen Fragen, die Prof. Wittum und Juniorprofessor Gillian Queisser mit diesem Ansatz verfolgen, kommen aus der Neurobiologie. „Es gibt verschiedene Wege, sich der Komplexität des Nervensystems zu nähern“, erläutert Queisser. „In unserer interdisziplinären Gruppe aus Mathematikern und Informatikern haben wir uns vorgenommen, die Signalverarbeitung in einzelnen Nervenzellen und kleinen Netzwerken so realitätsgetreu wie möglich zu modellieren.“

Sobald man aber die vereinfachten Modell-Strukturen der Nervenzelle gegen realistische eintauscht, ergeben sich zahlreiche neue Herausforderungen. Zunächst einmal mussten die Wissenschaftler ein 3D-Modell für die Ausbreitung elektrischer Signale in einem dreidimensionalen Gitter entwickeln. „Damit wurde es erstmals möglich, ein Aktionspotential auf der Zellmembran in Zeitlupe zu verfolgen. Zusätzlich konnten wir auch den Raum innerhalb und außerhalb der Zelle erfassen“, so Konstantinos Xylouris aus der Arbeitsgruppe von Wittum, der an der Entwicklung des Algorithmus maßgeblich beteiligt war.

Durch diese Erfolge ermutigt, drang das Forscherteam weiter vor bis zum Zellkern. In der klassischen Lehrbuchdarstellung ist der Kern immer rund. Aber Aufnahmen von Zellkernen aus dem kooperierenden Labor von Prof. Hilmar Bading in Heidelberg zeigten, dass die Membran des Zellkerns auch auf unterschiedliche Weise eingefaltet sein kann. Welchen Vorteil hat die Zelle davon, die energetisch günstigste Form aufzugeben? Die Antwort fanden die Wissenschaftler, indem sie Kerne aus Hunderten von Gewebeproben mit NeuRA erfassten und das Verhalten von Kalzium-Signalen in unterschiedlich geformten Kernen untersuchten. Im Zusammenspiel von Simulation und Experiment konnten sie zeigen, dass die Zelle durch die Veränderung ihrer Kernmorphologie Kalzium-Signale verändern kann. So sind eingefaltete Zellkerne gut geeignet, hochfrequente Kalzium-Signale aufzulösen, wohingegen nicht eingefaltete Kerne ein ankommendes hochfrequentes Signal integrieren.

Das Fazit der Forscher: Das Zusammenspiel zwischen Morphologie und Signalverarbeitung ist ein wesentlicher Bestandteil zellulärer Funktionalität. Will man das Spektrum dieser Interaktionen von einem Modell abdecken, muss dieses die detaillierte Morphologie von Zellen beinhalten.

Forschung Frankfurt kostenlos bestellen:
Ott@pvw.uni-frankfurt.de
Informationen: Junior-Prof. Gillian Queisser, Goethe-Zentrums für wissenschaftliches Rechnen, Campus Bockenheim, Tel: (069) 798-25282; Mobil: 0151-15171553; Gillian.Queisser@gcsc.uni-frankfurt.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn drittmittelstärksten und größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Parallel dazu erhält die Universität auch baulich ein neues Gesicht. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht ein neuer Campus, der ästhetische und funktionale Maßstäbe setzt. Die „Science City“ auf dem Riedberg vereint die naturwissenschaftlichen Fachbereiche in unmittelbarer Nachbarschaft zu zwei Max-Planck-Instituten. Mit über 55 Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität laut Stifterverband eine Führungsrolle ein.

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Telefon (069) 798 – 2 92 28, Telefax (069) 798 - 2 85 30, E-Mail hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de
http://www.forschung-frankfurt.uni-frankfurt.de/2011/index.html

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Computer mit Köpfchen
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pepper, der neue Kollege im Altenheim
17.08.2017 | Universität Siegen

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie