Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nature: kompakte, optische Datenübertragung

28.07.2015

Um Daten schneller und energieeffizienter zwischen elektronischen Chips auszutauschen, sind kompakte optische Übertragungsmöglichkeiten von großem Interesse. Ein Bauteil dazu ist der Mach-Zehnder-Modulator (MZM), der elektronische in optische Signale konvertieren kann. Forscher des KIT und der ETH haben nun einen plasmonischen MZM mit nur 12,5 Mikrometern Länge entwickelt, der digitale elektrische in optische Signale mit einer Rate von bis zu 108 Gigabit pro Sekunde konvertiert, und diesen im Fachmagazin Nature Photonics vorgestellt.
(DOI 10.1038/nphoton.2015.127)

„Gerade bei der Übertragung von Daten zwischen Computerchips bieten optische Technologien ein enormes Potential“, erklärt Manfred Kohl vom KIT. In dem von ihm geleiteten EU-Projekt NAVOLCHI, Nano Scale Disruptive Silicon-Plasmonic Platform for Chip-to-Chip Interconnection, wurde der plasmonische Modulator (ein elektrooptischer Wandler) entwickelt, der dem aktuellen MZM zugrunde liegt. „Kompakte, optische Sende- und Empfangseinheiten könnten die Geschwindigkeitsgrenzen heutiger Elektronik durchbrechen und helfen die Engpässe in den Datenzentren abzuschaffen.“


Mit sogenannten Eye-Diagrammen wird die Qualität der elektro-optischen Modulatoren geprüft.

Bild: (C. Haffner/ETH)

In der aktuellen Veröffentlichung wird ein MZM vorgestellt, der nur 12,5 Mikrometer lang ist, also etwa ein Zehntel der Dicke eines Haares. Er besteht aus zwei Armen, in denen sich je ein elektro-optischer Modulator befindet. Jeder Modulator besteht aus einem Metall-Isolator-Metall-Wellenleiter mit einem rund 80 Nanometer breiten mit elektro-optischem Kunststoff gefüllten Spalt und Gold-Seitenwänden, die zugleich als Elektroden funktionieren.

An den Elektroden liegt eine Spannung an, die im Takt der digitalen Daten moduliert wird. Der elektro-optische Kunststoff ändert seinen Brechungsindex in Abhängigkeit von der Spannung. Wellenleiter und Koppler aus Silizium führen die beiden Anteile eines aufgespaltenen Lichtstrahls zu den Spalten oder davon weg.

Die Lichtstrahlen der Wellenleiter regen im jeweiligen Spalt elektromagnetische Oberflächenwellen, sogenannte Oberflächen-Plasmonen an. Durch die am Kunststoff anliegende Spannung werden die Oberflächenwellen moduliert. Die Modulation erfolgt in beiden Spalten unterschiedlich aber kohärent, da dieselbe Spannung mit unterschiedlicher Polung angelegt wird. Nach Durchlaufen der Spalte treten die Oberflächenwellen zunächst als modulierte Lichtstrahlen in die Ausgangs-Lichtwellenleiter ein und werden danach überlagert. Als Ergebnis erhält man einen Lichtstrahl in dessen Stärke (Amplitude) die digitale Information codiert wurde.

Im Experiment arbeitet der MZM zuverlässig im gesamten Spektralbereich der Breitband-Glasfaser-Netzwerke von 1500 – 1600 Nanometer bei einer elektrischen Bandbreite von 70 Gigahertz mit Datenströmen von bis zu 108 Gigabit pro Sekunde. Die hohe Modulationstiefe folgt aus der hohen Fertigungsgenauigkeit der Silizium-Technologie. Der MZM lässt sich mit weitverbreiteten CMOS-Verfahren aus der Mikroelektronik herstellen und damit leicht in aktuelle Chiparchitekturen integrieren.

Derzeit werden in Deutschland rund 10 Prozent des Stromes durch Informations- und Kommunikationstechnologien verbraucht, etwa durch Computer und Smartphones beim Nutzer, aber auch durch die Server in großen Rechenzentren. Da der Datenverkehr exponentiell anwächst, bedarf es neuer Ansätze, die den Durchsatz steigern und gleichzeitig den Energieverbrauch dämpfen. Plasmonische Bauteile könnten hier einen entscheidenden Beitrag liefern.

Ziel des EU-Projekts NAVOLCHI ist es, die Interaktion von Licht und Elektronen in Metalloberflächen auszunutzen, um neuartige Bauteile für die optische Datenübertragung zwischen Chips zu entwickeln. Das Projekt wird im siebten Forschungs-Rahmenprogram der EU gefördert und verfügt über ein Budget von 3,4 Millionen Euro.

Weitere Informationen zum Projekt NAVOLCHI: http://www.imt.kit.edu/projects/navolchi

Pressemeldung zum elektro-optischen Wandler: http://www.kit.edu/kit/pi_2014_14701.php

All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale, C. Haffner et al., nature photonics AOP, DOI 10.1038/nphoton.2015.127
http://www.nature.com/nphoton/index.html

Weiterer Kontakt:
Kosta Schinarakis, PKM – Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) vereint als selbständige Körperschaft des öffentlichen Rechts die Aufgaben einer Universität des Landes Baden-Württemberg und eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft. Seine drei Kernaufgaben Forschung, Lehre und Innovation verbindet das KIT zu einer Mission. Mit rund 9 400 Mitarbeiterinnen und Mitarbeitern sowie 24 500 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

Weitere Informationen:

http://www.imt.kit.edu/projects/navolchi
http://www.kit.edu/kit/pi_2014_14701.php
http://www.nature.com/nphoton/index.html

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Verbesserung des mobilen Internetzugangs der Zukunft
21.07.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht Affen aus dem Weltraum zählen? Neue Methoden helfen die Artenvielfalt zu erfassen
21.07.2017 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten