Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nature: kompakte, optische Datenübertragung

28.07.2015

Um Daten schneller und energieeffizienter zwischen elektronischen Chips auszutauschen, sind kompakte optische Übertragungsmöglichkeiten von großem Interesse. Ein Bauteil dazu ist der Mach-Zehnder-Modulator (MZM), der elektronische in optische Signale konvertieren kann. Forscher des KIT und der ETH haben nun einen plasmonischen MZM mit nur 12,5 Mikrometern Länge entwickelt, der digitale elektrische in optische Signale mit einer Rate von bis zu 108 Gigabit pro Sekunde konvertiert, und diesen im Fachmagazin Nature Photonics vorgestellt.
(DOI 10.1038/nphoton.2015.127)

„Gerade bei der Übertragung von Daten zwischen Computerchips bieten optische Technologien ein enormes Potential“, erklärt Manfred Kohl vom KIT. In dem von ihm geleiteten EU-Projekt NAVOLCHI, Nano Scale Disruptive Silicon-Plasmonic Platform for Chip-to-Chip Interconnection, wurde der plasmonische Modulator (ein elektrooptischer Wandler) entwickelt, der dem aktuellen MZM zugrunde liegt. „Kompakte, optische Sende- und Empfangseinheiten könnten die Geschwindigkeitsgrenzen heutiger Elektronik durchbrechen und helfen die Engpässe in den Datenzentren abzuschaffen.“


Mit sogenannten Eye-Diagrammen wird die Qualität der elektro-optischen Modulatoren geprüft.

Bild: (C. Haffner/ETH)

In der aktuellen Veröffentlichung wird ein MZM vorgestellt, der nur 12,5 Mikrometer lang ist, also etwa ein Zehntel der Dicke eines Haares. Er besteht aus zwei Armen, in denen sich je ein elektro-optischer Modulator befindet. Jeder Modulator besteht aus einem Metall-Isolator-Metall-Wellenleiter mit einem rund 80 Nanometer breiten mit elektro-optischem Kunststoff gefüllten Spalt und Gold-Seitenwänden, die zugleich als Elektroden funktionieren.

An den Elektroden liegt eine Spannung an, die im Takt der digitalen Daten moduliert wird. Der elektro-optische Kunststoff ändert seinen Brechungsindex in Abhängigkeit von der Spannung. Wellenleiter und Koppler aus Silizium führen die beiden Anteile eines aufgespaltenen Lichtstrahls zu den Spalten oder davon weg.

Die Lichtstrahlen der Wellenleiter regen im jeweiligen Spalt elektromagnetische Oberflächenwellen, sogenannte Oberflächen-Plasmonen an. Durch die am Kunststoff anliegende Spannung werden die Oberflächenwellen moduliert. Die Modulation erfolgt in beiden Spalten unterschiedlich aber kohärent, da dieselbe Spannung mit unterschiedlicher Polung angelegt wird. Nach Durchlaufen der Spalte treten die Oberflächenwellen zunächst als modulierte Lichtstrahlen in die Ausgangs-Lichtwellenleiter ein und werden danach überlagert. Als Ergebnis erhält man einen Lichtstrahl in dessen Stärke (Amplitude) die digitale Information codiert wurde.

Im Experiment arbeitet der MZM zuverlässig im gesamten Spektralbereich der Breitband-Glasfaser-Netzwerke von 1500 – 1600 Nanometer bei einer elektrischen Bandbreite von 70 Gigahertz mit Datenströmen von bis zu 108 Gigabit pro Sekunde. Die hohe Modulationstiefe folgt aus der hohen Fertigungsgenauigkeit der Silizium-Technologie. Der MZM lässt sich mit weitverbreiteten CMOS-Verfahren aus der Mikroelektronik herstellen und damit leicht in aktuelle Chiparchitekturen integrieren.

Derzeit werden in Deutschland rund 10 Prozent des Stromes durch Informations- und Kommunikationstechnologien verbraucht, etwa durch Computer und Smartphones beim Nutzer, aber auch durch die Server in großen Rechenzentren. Da der Datenverkehr exponentiell anwächst, bedarf es neuer Ansätze, die den Durchsatz steigern und gleichzeitig den Energieverbrauch dämpfen. Plasmonische Bauteile könnten hier einen entscheidenden Beitrag liefern.

Ziel des EU-Projekts NAVOLCHI ist es, die Interaktion von Licht und Elektronen in Metalloberflächen auszunutzen, um neuartige Bauteile für die optische Datenübertragung zwischen Chips zu entwickeln. Das Projekt wird im siebten Forschungs-Rahmenprogram der EU gefördert und verfügt über ein Budget von 3,4 Millionen Euro.

Weitere Informationen zum Projekt NAVOLCHI: http://www.imt.kit.edu/projects/navolchi

Pressemeldung zum elektro-optischen Wandler: http://www.kit.edu/kit/pi_2014_14701.php

All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale, C. Haffner et al., nature photonics AOP, DOI 10.1038/nphoton.2015.127
http://www.nature.com/nphoton/index.html

Weiterer Kontakt:
Kosta Schinarakis, PKM – Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) vereint als selbständige Körperschaft des öffentlichen Rechts die Aufgaben einer Universität des Landes Baden-Württemberg und eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft. Seine drei Kernaufgaben Forschung, Lehre und Innovation verbindet das KIT zu einer Mission. Mit rund 9 400 Mitarbeiterinnen und Mitarbeitern sowie 24 500 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

Weitere Informationen:

http://www.imt.kit.edu/projects/navolchi
http://www.kit.edu/kit/pi_2014_14701.php
http://www.nature.com/nphoton/index.html

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Ein stabiles magnetisches Bit aus drei Atomen
21.09.2017 | Sonderforschungsbereich 668

nachricht Drohnen sehen auch im Dunkeln
20.09.2017 | Universität Zürich

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie