Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Maximale Geschwindigkeit für das weltweite Netz

06.12.2013
Ein Forscher der HfTL hat zusammen mit Kollegen der EPFL in Lausanne eine Methode entwickelt, um Daten mit der maximal möglichen Symbolrate in optischen Glasfasern zu übertragen.

Optische Fasern sind das Rückgrat der gesamten modernen Kommunikation und des Internet. Die Anfragen an Internet-Suchmaschinen und ihre Ergebnisse, Filme, Musik und viele andere Daten werden mit Hilfe von Lichtsignalen über das weltweite Glasfasernetz übertragen. Glasfasern haben eine immense Kapazität und sind damit bislang in der Lage, die riesigen, täglich erzeugten Datenmengen zu transportieren.


Grafische Darstellung des Lichtsignals in einer Glasfaser
Jamani Caillet / EPFL

Neue Anwendungen wie z.B. das hochauflösende und demnächst wahrscheinlich das ultra-hochauflösende Fernsehen on-demand, aber auch Smartphones, Tablets und andere Geräte mit immer höherer Bandbreite führen allerdings dazu, dass die Datenrate in den weltweiten Kommunikationsnetzen derzeit mit einer Rate von 38% pro Jahr steigt. Die Glasfasernetze haben zwar eine sehr große, aber keine unendliche Kapazität.

Thomas Schneider, Professor der Hochschule für Telekommunikation Leipzig (HfTL), hat während seines Aufenthalts als Gastprofessor an der EPFL in Lausanne, Schweiz, zusammen mit den Arbeitsgruppen von Camille Sophie Brés und Luc Thévenaz eine innovative Methode entwickelt, wie mit relativ wenig Aufwand, die maximal mögliche Symbolrate in optischen Fasern übertragen werden kann. Dies kann zu einer drastischen Steigerung der übertragbaren Datenraten und damit zu einem weiteren, ungehinderten Wachstum des Internet führen.

Lichtsignale, die in den Fasernetzen übertragen werden, sind die Arbeitspferde des Internet. Diese Lichtsignale sind elektromagnetische Wellen, deren Parameter in Abhängigkeit von der zu übertragenden Information verändert werden. Die Lichtsignale in den Glasfasern haben Wellenlängen von 1550 nm und liegen damit im Bereich des nahen Infrarot. Das Licht, welches der Mensch direkt mit seinen Augen sehen kann, hat hingegen Wellenlängen zwischen 800 nm (Rot) und 400 nm (Violett).

Der einfachste Parameter des Lichts der verändert werden kann, ist die Amplitude. Das Licht wird also einfach an- und ausgeschalten, je nachdem ob eine „1“ oder eine „0“ des digitalen Signals übertragen werden soll. Um höhere Datenraten übertragen zu können, werden heute aber auch die Phase, oder die Frequenz des Lichts zur Übertragung der Information genutzt. Diese Veränderung der Parameter der Welle, in Abhängigkeit von dem zu übertragenden Signal, wird Modulation genannt. Eine solche Modulation führt aber dazu, dass neue Wellen mit neuen Frequenzen entstehen. Je höher die zu übertragenden Datenraten sind, umso mehr Frequenzen werden dazu benötigt. Die Menge der Frequenzen, die für das modulierte Signal benötigt werden, wird als Spektrum bezeichnet.

Eine Glasfaser kann nur eine bestimmte Menge von Frequenzen, und damit nur eine bestimmte maximale Menge an Information transportieren. Damit eine Vielzahl an Information gleichzeitig in der Glasfaser übertragen werden kann, wird das gesamte zur Verfügung stehende Spektrum der Faser in einzelne Kanäle aufgeteilt, so wie z.B. die Fahrspuren auf einer Autobahn. Die maximal mögliche Menge an Information lässt sich transportieren, wenn die Kanäle so dicht wie möglich gepackt werden können. Damit das möglich wird, muss jeder einzelne Kanal ein rechteckförmiges Spektrum aufweisen.

Ein rechteckförmiges Spektrum bedeutet aber, dass das Signal mit einer sinus cardinalis (sinc)-Funktion moduliert werden muss. Diese Funktion ist aber unendlich lang ausgedehnt und damit praktisch leider nicht realisierbar. Es gab bereits mehrere Versuche solche Pulse zu erzeugen und für die Datenübertragung zu nutzen, allerdings sind diese meist sehr aufwändig und besitzen kein rechteckförmiges Spektrum, oder sie sind nicht in der Lage, die gesamte Bandbreite der Glasfaser zu füllen.

Während seiner Gastprofessur an der EPFL entwickelte Thomas Schneider von der HfTL in Diskussionen mit Kollegen die entscheidende Idee, an Stelle eines einzelnen sinc-Pulses, eine Pulsfolge zu nehmen. Im Gegensatz zum nur theoretisch realisierbaren einzelnen Puls lässt sich diese Pulsfolge sehr einfach durch einen Frequenzkamm herstellen. Damit lassen sich die Pulse direkt im optischen Bereich erzeugen und jeder einzelne Kanal kann ein sehr breites, rechteckförmiges Spektrum aufweisen.

In Zusammenarbeit mit den beiden Gruppen von Camille Sophie Brés und Luc Thevénaz konnte der Nachweis erbracht werden, dass die Pulsfolge dieselben Eigenschaften für eine Datenübertragung aufweist wie die einzelnen Pulse. Gleichzeitig konnte in ersten Experimenten gezeigt werden, dass sich diese Pulse tatsächlich sehr einfach erzeugen lassen und ein annähernd ideales rechteckförmiges Spektrum haben. Für eine Realisierung in den weltweiten Glasfasernetzen müssen nur der Sender und Empfänger ausgetauscht werden. Damit eröffnen die neuen optisch erzeugten Pulse die Möglichkeit, Daten mit der maximalen Geschwindigkeit über optische Glasfasern zu übertragen.

Kontakt: Prof. Dr. rer .nat. Thomas Schneider
schneider@hft-leipzig.de
Die Hochschule für Telekommunikation Leipzig ist eine durch das sächsische Staatsministerium für Wissenschaft und Kunst anerkannte private Hochschule im Freistaat Sachsen.

Die HfTL steht für Lehre und Forschung im Bereich der Informations- und Kommunikationstechnologien und ist die einzige deutsche Hochschule mit diesem Spezialprofil. Sie bildet rund 1.200 Studierende in den direkten, dualen und berufsbegleitenden Bachelorstudiengängen Informations- und Mediendesign, Wirtschaftsinformatik, Kommunikations- und Medieninformatik, sowie in den Masterstudiengängen Wirtschaftsinformatik und Informations- und Kommunikationstechnik aus.

Torsten Büttner | idw
Weitere Informationen:
http://www.hft-leipzig.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Volle Konzentration am Steuer
25.11.2016 | Leibniz-Institut für Arbeitsforschung an der TU Dortmund

nachricht Warum Reibung von der Zahl der Schichten abhängt
24.11.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie