Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie die Masse in die Welt kommt - Supercomputer berechnen erstmals die exakte Nukleonenmasse

21.11.2008
Einem internationalen Forscherteam ist es erstmalig gelungen, die Masse der wichtigsten Bausteine der Materie - Protonen und Neutronen - auf theoretischem Weg zu berechnen.

Das wichtigste Hilfsmittel der Physiker: der Supercomputer JUGENE am Forschungszentrum Jülich. Die aufwändigen Simulationen der Wissenschaftler bestätigen die Richtigkeit einer grundlegenden physikalischen Theorie, der Quantenchromodynamik. Die Ergebnisse wurden in der aktuellen Ausgabe der Zeitschrift "Science" veröffentlicht (21. Nov. 2008 Vol. 322, #5905).

Materie ist aus Atomen aufgebaut, Atome wiederum bestehen aus einem Kern aus Protonen und Neutronen, um den Elektronen kreisen. "Mehr als 99,9 Prozent der Masse der sichtbaren Materie stammt von den Protonen und Neutronen", erläutert der gegenwärtig an der Bergischen Universität Wuppertal tätige ungarische Physiker Zoltan Fodor, der das Forschungsprojekt am Jülicher Supercomputer JUGENE geleitet hat. Diese Teilchen, von den Physikern unter dem Begriff "Nukleonen" zusammengefasst, sind aus jeweils drei Quarks aufgebaut.

Die Masse der drei Quarks ergibt zusammengerechnet jedoch nur etwa fünf Prozent der Masse eines Kernbausteins -- woher also haben die Nukleonen ihre Masse? Die Antwort auf diese Frage findet sich in der berühmten Formel E = m × c2 von Albert Einstein: Energie und Masse sind zueinander äquivalent, und 95 Prozent der Nukleonenmasse haben ihren Ursprung in der Bewegungsenergie der Quarks und zwischen ihnen ausgetauschter Teilchen.

Die drei Quarks eines Nukleons sind durch die starke Wechselwirkung aneinander gebunden, eine Kraft, die zwar nur im Bereich der Elementarteilchen von Bedeutung ist, die dafür aber - ihr Name sagt es - sehr stark ist. Die Physiker haben seit langem eine theoretische Beschreibung dieser Wechselwirkung, die Quantenchromodynamik. "Im Prinzip sollte es möglich sein, aus der Quantenchromodynamik die Masse der Nukleonen zu berechnen", so Fodor.

Solche Berechnungen sind jedoch ungeheuer kompliziert. So wie die elektromagnetischen Kräfte durch Photonen - Lichtteilchen - vermittelt werden, gibt es auch bei der starken Wechselwirkung Trägerteilchen, die sogenannten Gluonen. Doch diese Gluonen können sich - im Gegensatz zu Photonen - auch gegenseitig anziehen. Diese Selbstwechselwirkung führt einerseits dazu, dass Quarks sich so stark anziehen, dass sie niemals alleine auftreten, sondern immer zu zweit oder zu dritt größere Teilchen bilden. Und anderseits macht die Selbstwechselwirkung die Berechnung der Masse dieser Teilchen so komplex, dass sie bislang die Möglichkeiten der Forscher überstieg.

Dank des Supercomputers JUGENE am Forschungszentrum Jülich konnten Fodor und seine Kollegen nun diese Hürde überwinden, erstmals die starke Wechselwirkung auch für größere Quarkabstände richtig beschreiben und so die Massen von Protonen, Nukleonen und anderen aus Quarks aufgebauten Teilchen berechnen. 180 Billionen Rechenoperationen kann JUGENE in jeder Sekunde durchführen, damit ist er der schnellste Computer Europas.

Für ihre Berechnungen haben Fodor und seine Kollegen Raum und Zeit in ein engmaschiges vierdimensionales Gitter zerlegt und die komplizierten Gleichungen der Quantenchromdynamik jeweils auf den Punkten dieses Gitters gelöst. Dann haben die Forscher den Abstand der Gitterpunkte schrittweise immer kleiner gemacht, um sich so immer weiter an die Wirklichkeit, die kontinuierliche Raumzeit, anzunähern. "Es handelt sich um eine der rechenintensivsten Arbeiten in der Geschichte der Menschheit", so Fodor.

Als Ergebnis erhielten die Wissenschaftler schließlich Werte für die Massen der Nukleonen, die genau mit den in Experimenten gemessenen Werten übereinstimmen. "Damit haben wir gezeigt, dass die Quantenchromodynamik tatsächlich eine korrekte Beschreibung der starken Wechselwirkung ist", freut sich Fodor.

"Der Ursprung des überwiegenden Teils der Masse der sichtbaren Materie ist dadurch also geklärt", erklärt der Forscher weiter. Doch damit sind nicht alle Rätsel gelöst. Denn die sichtbare Materie macht nur einen kleinen Teil der Gesamtmasse des Universums aus - etwa 80 Prozent dieser Masse ist dunkel und besteht aus bislang unbekannten Elementarteilchen. "Woher diese Dunkle Materie ihre Masse hat, dafür haben wir bislang keine Erklärung."

Weitere Informationen zu Zoltan Fodors Forschung:
http://www.presse-archiv.uni-wuppertal.de/html/module/publikationen/magazin_34/urknall.htm
Aktuelle Ausgaben der Fachzeitschrift science
http://www.sciencemag.org/
Ausbaupläne der Jülicher Supercomputer für 2009
http://www.fz-juelich.de/portal/index.php?cmd=show&mid=647&index=163
Pressemeldung zur Einweihung von JUGENE:
http://www.fz-juelich.de/portal/index.php?cmd=show&mid=563&index=163
Die aktuelle Broschüre Supercomputing (PDF, 2.3 MB)
http://www.fz-juelich.de/portal/datapool/page/569//Supercomp_netz.pdf
Supercomputer und Simulationswissenschaften in Jülich
http://www.fz-juelich.de/supercomputer
Ansprechpartner:
Prof. Zoltan Fodor, Tel. 0202 439-2614,
E-Mail: fodor@theorie.physik.uni-wuppertal.de
Pressekontakt:
Koste Schinarakis, Tel. 02461 61-4771,
E-Mail: k.schinarakis@fz-juelich.de

Peter Schäfer | idw
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Saarbrücker Forscher erstellen digitale Objekte aus unvollständigen 3-D-Daten
12.10.2017 | Universität des Saarlandes

nachricht Big Data: Flächendeckendes Messnetz für Feinstaub
09.10.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Kalte Moleküle auf Kollisionskurs

Mit einer neuen Kühlmethode gelingt Wissenschaftlern am MPQ die Beobachtung von Stößen in einem dichten Strahl aus kalten und langsamen dipolaren Molekülen.

Wie verlaufen chemische Reaktionen bei extrem tiefen Temperaturen? Um diese Frage zu beantworten, benötigt man molekulare Proben, die gleichzeitig kalt, dicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Topologische Isolatoren: Neuer Phasenübergang entdeckt

17.10.2017 | Physik Astronomie

Partnervermittlung mit Konsequenzen

17.10.2017 | Biowissenschaften Chemie

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungsnachrichten