Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lösung für langzeitstabile ReRAMs

19.10.2015

Jülicher Forscher entwickeln Designregeln für ausfallsichere memristive Speicherbauelemente

Sie sind um ein Vielfaches schneller als FLASH-Speicher und benötigen deutlich weniger Energie: ReRAM-Speicher könnten die Computertechnik in den nächsten Jahren revolutionieren. Doch für viele Anwendungen sind die memristiven Speicherzellen noch zu fehleranfällig.


Blick in das memristive SrTiO3 Bauelement: Spektromikroskopische Identifizierung des schaltenden Filamentes und der SrO-Lage, die die Rückdiffusion von Sauerstoff verhindert.

Copyright: Forschungszentrum Jülich


Prof. Regina Dittmann am Photoemissionsmikroskop NanoESCA im Electronic Oxide Cluster Labor des Jülicher Peter Grünberg Instituts (PGI-7), mit dem die Transportvorgänge untersucht wurden.

Copyright: Peter Winandy

Ein Jülicher und Aachener Forscherteam konnte nun aufdecken, wie sich Speicherzellen, die schnell Daten verlieren, mikroskopisch von jenen unterscheiden, die über lange Zeit stabil sind. Zugleich stießen sie auf eine Lösung für fehlerresistente Speicherzellen: eine Speicherschicht für Sauerstoff-Ionen, die den unerwünschten Vorgang verlangsamt und womöglich ganz unterdrückt. Die Ergebnisse sind in der Fachzeitschrift Nature Communications erschienen.

Memristive Speicherbauelemente gelten als Hoffnungsträger für die Computer der Zukunft. Darüber hinaus sind sie wie geschaffen für die Verschaltung zu sogenannten neuromorphen Systemen, die Daten mit Methoden verarbeiten, die dem Gehirn nachempfunden sind. Entsprechende Speicherbausteine gelten als äußerst schnell, energiesparend und lassen sich sehr gut bis in den Nanometerbereich miniaturisieren.

Zudem handelt es sich – anders als beim aktuell gängigen DRAM-Arbeitsspeicher – um einen nichtflüchtigen Speichertyp. Die Daten bleiben auch dann noch erhalten, wenn der Strom abgeschaltet wird, was die Zeit für das Hochfahren des Rechners auf wenige Sekunden verkürzen könnte.

Noch ist die Technologie allerdings nicht ausgereift genug, um die gängigen Speichertypen zu verdrängen. "In Laborexperimenten konnte man schon zeigen, dass die eingeschriebene Information in einem memristiven Speicherbauelement prinzipiell 10 Jahre lang erhalten bleibt, ohne dass sie neu aufgefrischt werden müsste. Es gibt aber immer einzelne Speicherzellen, die ihre Daten schon viel früher verlieren. Warum, war lange nicht klar", erklärt Prof. Regina Dittmann vom Jülicher Peter Grünberg Institut (PGI-7).

In der Vergangenheit hatten die Forscherinnen und Forscher unter der Leitung von Prof. Rainer Waser bereits maßgeblich dazu beigetragen, die mikroskopischen Mechanismen des Schaltverhaltens aufzuklären. Nun konnten sie im Rahmen des Sonderforschungsbereichs SFB 917 auch die Vorgänge klären, die für den vorzeitigen Datenverlust verantwortlich sind. "Entscheidend ist hierfür die Bewegung von Sauerstoff-Ionen, die auch für den Schaltprozess unerlässlich ist", erläutert Dittmann.

Die Funktionsweise memristiver Zellen beruht auf einem ganz besonderen Effekt: Ihr elektrischer Widerstand ist nicht konstant, wie es die Regel ist. Vielmehr lässt er sich durch das Anlegen einer äußeren Spannung verändern und wieder zurücksetzen. So stellt beispielsweise ein niedriger Widerstandszustand die logische "1" und ein hoher Widerstandszustand die logische "0" dar.

Mehr Symbole braucht es nicht, um alle Informationen in einem binären Code abzuspeichern. Die Änderung des elektrischen Widerstands wird dabei durch die Wanderung von Sauerstoff-Ionen herbeigeführt. Bewegen sich die Ionen aus der sauerstoffhaltigen Metalloxidschicht heraus, so wird das Material schlagartig leitfähig – der elektrische Widerstand sinkt. Doch im Laufe der Zeit kann es passieren, dass die Sauerstoff-Ionen wieder von alleine zurückwandern und die gespeicherte Information verlorengeht.

"Obwohl sich erste memristive Speicher bereits seit etwa zwei Jahren auf dem Markt befinden, wurden diese Speicherbauelemente bisher weitgehend mithilfe rein empirischer Methoden optimiert", erläutert Dittmann. Die Schaltprozesse laufen innerhalb winziger Filamente ab. Um sie zu erforschen, hat sie die Reaktionen im Jülicher Electronic Oxide Cluster Labor und am italienischen Elektronen-Synchrotron Elettra in Triest in enger Kooperation mit der Arbeitsgruppe von Prof. Claus Michael Schneider am Jülicher Peter Grünberg Institut (PGI-6) mit Nanometer-Präzision sichtbar gemacht.

Dabei stießen die Wissenschaftler zugleich auf eine Lösung des Problems. "Wir haben festgestellt, dass sich bei allen zeitstabilen Strontiumtitanat-Zellen eine Strontiumoxid-Schicht an der Oberfläche der Elektrode abgelagert hatte. Dies brachte uns auf die Idee, dass die Strontiumoxid-Schicht Sauerstoff-Ionen nur sehr langsam transportiert – und somit die Zeitstabilität der Zelle verbessert", erläutert Dittmann.

Berechnungen in der Gruppe von Dr. Roger De Souza vom Institut für Physikalische Chemie an der RWTH Aachen bestätigten die Vermutung, woraufhin das Team Materialien auswählen konnte, die ähnliche Merkmale aufweisen, sich aber besser gezielt auf die Elektrodenoberfläche aufbringen lassen. Als eine Art Speicherschicht für Sauerstoff verhindern sie die Rückdiffusion.

Damit konnte erstmals eine Designregeln für ReRAM Zellen aus dem mikroskopischen Verständnis des Sauerstofftransports innerhalb der Zellen abgeleitet werden. Merkliche Auswirkungen auf die Schaltgeschwindigkeit sind nicht zu erwarten, da sich der Sauerstofftransport mit steigender Spannung und Temperatur während des Schaltvorgangs schlagartig erhöht.


Originalpublikation:
Christoph Baeumer, Christoph Schmitz, Amr H. H. Ramadan, Hongchu Du, Katharina Skaja, Vitaliy Feyer, Philipp Müller, Benedikt Arndt, Chun-Lin Jia, Joachim Mayer, Roger A. De Souza, Claus Michael Schneider, Rainer Waser, and Regina Dittmann, "Spectromicroscopic insights for rational design of redox-based memristive devices", Nature Communications 6:8610 doi: 10.1038/ncomms9610 (2015).

Weitere Informationen:

Dossier "Resistive Speicher"
Peter Grünberg Institut, Elektronische Materialien (PGI-7)
Peter Grünberg Institut, Elektronische Eigenschaften (PGI-6)


Institut für Physikalische Chemie der Rheinisch-Westfälischen Technischen Hochschule Aachen


Ansprechpartner:

MSc. Christoph Bäumer
Peter Grünberg Institut (PGI-7)
Tel. 02461 61-5339
E-Mail: c.baeumer@fz-juelich.de

Prof. Dr. Regina Dittmann
Peter Grünberg Institut (PGI-7)
Tel. 02461 61-4760
E-Mail: r.dittmann@fz-juelich.de

Pressekontakt:

Tobias Schlößer
Unternehmenskommunikation
Tel. 02461 61-4771
E-Mail: t.schloesser@fz-juelich.de

Tobias Schlößer | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2015/15-10-19reram.html

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Der Form eine Funktion verleihen
23.06.2017 | Institute of Science and Technology Austria

nachricht Zukunftstechnologie 3D-Druck: Raubkopien mit sicherem Lizenzmanagement verhindern
23.06.2017 | Universität Ulm

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften