Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lösung für langzeitstabile ReRAMs

19.10.2015

Jülicher Forscher entwickeln Designregeln für ausfallsichere memristive Speicherbauelemente

Sie sind um ein Vielfaches schneller als FLASH-Speicher und benötigen deutlich weniger Energie: ReRAM-Speicher könnten die Computertechnik in den nächsten Jahren revolutionieren. Doch für viele Anwendungen sind die memristiven Speicherzellen noch zu fehleranfällig.


Blick in das memristive SrTiO3 Bauelement: Spektromikroskopische Identifizierung des schaltenden Filamentes und der SrO-Lage, die die Rückdiffusion von Sauerstoff verhindert.

Copyright: Forschungszentrum Jülich


Prof. Regina Dittmann am Photoemissionsmikroskop NanoESCA im Electronic Oxide Cluster Labor des Jülicher Peter Grünberg Instituts (PGI-7), mit dem die Transportvorgänge untersucht wurden.

Copyright: Peter Winandy

Ein Jülicher und Aachener Forscherteam konnte nun aufdecken, wie sich Speicherzellen, die schnell Daten verlieren, mikroskopisch von jenen unterscheiden, die über lange Zeit stabil sind. Zugleich stießen sie auf eine Lösung für fehlerresistente Speicherzellen: eine Speicherschicht für Sauerstoff-Ionen, die den unerwünschten Vorgang verlangsamt und womöglich ganz unterdrückt. Die Ergebnisse sind in der Fachzeitschrift Nature Communications erschienen.

Memristive Speicherbauelemente gelten als Hoffnungsträger für die Computer der Zukunft. Darüber hinaus sind sie wie geschaffen für die Verschaltung zu sogenannten neuromorphen Systemen, die Daten mit Methoden verarbeiten, die dem Gehirn nachempfunden sind. Entsprechende Speicherbausteine gelten als äußerst schnell, energiesparend und lassen sich sehr gut bis in den Nanometerbereich miniaturisieren.

Zudem handelt es sich – anders als beim aktuell gängigen DRAM-Arbeitsspeicher – um einen nichtflüchtigen Speichertyp. Die Daten bleiben auch dann noch erhalten, wenn der Strom abgeschaltet wird, was die Zeit für das Hochfahren des Rechners auf wenige Sekunden verkürzen könnte.

Noch ist die Technologie allerdings nicht ausgereift genug, um die gängigen Speichertypen zu verdrängen. "In Laborexperimenten konnte man schon zeigen, dass die eingeschriebene Information in einem memristiven Speicherbauelement prinzipiell 10 Jahre lang erhalten bleibt, ohne dass sie neu aufgefrischt werden müsste. Es gibt aber immer einzelne Speicherzellen, die ihre Daten schon viel früher verlieren. Warum, war lange nicht klar", erklärt Prof. Regina Dittmann vom Jülicher Peter Grünberg Institut (PGI-7).

In der Vergangenheit hatten die Forscherinnen und Forscher unter der Leitung von Prof. Rainer Waser bereits maßgeblich dazu beigetragen, die mikroskopischen Mechanismen des Schaltverhaltens aufzuklären. Nun konnten sie im Rahmen des Sonderforschungsbereichs SFB 917 auch die Vorgänge klären, die für den vorzeitigen Datenverlust verantwortlich sind. "Entscheidend ist hierfür die Bewegung von Sauerstoff-Ionen, die auch für den Schaltprozess unerlässlich ist", erläutert Dittmann.

Die Funktionsweise memristiver Zellen beruht auf einem ganz besonderen Effekt: Ihr elektrischer Widerstand ist nicht konstant, wie es die Regel ist. Vielmehr lässt er sich durch das Anlegen einer äußeren Spannung verändern und wieder zurücksetzen. So stellt beispielsweise ein niedriger Widerstandszustand die logische "1" und ein hoher Widerstandszustand die logische "0" dar.

Mehr Symbole braucht es nicht, um alle Informationen in einem binären Code abzuspeichern. Die Änderung des elektrischen Widerstands wird dabei durch die Wanderung von Sauerstoff-Ionen herbeigeführt. Bewegen sich die Ionen aus der sauerstoffhaltigen Metalloxidschicht heraus, so wird das Material schlagartig leitfähig – der elektrische Widerstand sinkt. Doch im Laufe der Zeit kann es passieren, dass die Sauerstoff-Ionen wieder von alleine zurückwandern und die gespeicherte Information verlorengeht.

"Obwohl sich erste memristive Speicher bereits seit etwa zwei Jahren auf dem Markt befinden, wurden diese Speicherbauelemente bisher weitgehend mithilfe rein empirischer Methoden optimiert", erläutert Dittmann. Die Schaltprozesse laufen innerhalb winziger Filamente ab. Um sie zu erforschen, hat sie die Reaktionen im Jülicher Electronic Oxide Cluster Labor und am italienischen Elektronen-Synchrotron Elettra in Triest in enger Kooperation mit der Arbeitsgruppe von Prof. Claus Michael Schneider am Jülicher Peter Grünberg Institut (PGI-6) mit Nanometer-Präzision sichtbar gemacht.

Dabei stießen die Wissenschaftler zugleich auf eine Lösung des Problems. "Wir haben festgestellt, dass sich bei allen zeitstabilen Strontiumtitanat-Zellen eine Strontiumoxid-Schicht an der Oberfläche der Elektrode abgelagert hatte. Dies brachte uns auf die Idee, dass die Strontiumoxid-Schicht Sauerstoff-Ionen nur sehr langsam transportiert – und somit die Zeitstabilität der Zelle verbessert", erläutert Dittmann.

Berechnungen in der Gruppe von Dr. Roger De Souza vom Institut für Physikalische Chemie an der RWTH Aachen bestätigten die Vermutung, woraufhin das Team Materialien auswählen konnte, die ähnliche Merkmale aufweisen, sich aber besser gezielt auf die Elektrodenoberfläche aufbringen lassen. Als eine Art Speicherschicht für Sauerstoff verhindern sie die Rückdiffusion.

Damit konnte erstmals eine Designregeln für ReRAM Zellen aus dem mikroskopischen Verständnis des Sauerstofftransports innerhalb der Zellen abgeleitet werden. Merkliche Auswirkungen auf die Schaltgeschwindigkeit sind nicht zu erwarten, da sich der Sauerstofftransport mit steigender Spannung und Temperatur während des Schaltvorgangs schlagartig erhöht.


Originalpublikation:
Christoph Baeumer, Christoph Schmitz, Amr H. H. Ramadan, Hongchu Du, Katharina Skaja, Vitaliy Feyer, Philipp Müller, Benedikt Arndt, Chun-Lin Jia, Joachim Mayer, Roger A. De Souza, Claus Michael Schneider, Rainer Waser, and Regina Dittmann, "Spectromicroscopic insights for rational design of redox-based memristive devices", Nature Communications 6:8610 doi: 10.1038/ncomms9610 (2015).

Weitere Informationen:

Dossier "Resistive Speicher"
Peter Grünberg Institut, Elektronische Materialien (PGI-7)
Peter Grünberg Institut, Elektronische Eigenschaften (PGI-6)


Institut für Physikalische Chemie der Rheinisch-Westfälischen Technischen Hochschule Aachen


Ansprechpartner:

MSc. Christoph Bäumer
Peter Grünberg Institut (PGI-7)
Tel. 02461 61-5339
E-Mail: c.baeumer@fz-juelich.de

Prof. Dr. Regina Dittmann
Peter Grünberg Institut (PGI-7)
Tel. 02461 61-4760
E-Mail: r.dittmann@fz-juelich.de

Pressekontakt:

Tobias Schlößer
Unternehmenskommunikation
Tel. 02461 61-4771
E-Mail: t.schloesser@fz-juelich.de

Tobias Schlößer | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2015/15-10-19reram.html

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Neues Sensorsystem sorgt für sichere Ernte
23.10.2017 | Universität Bielefeld

nachricht IT-Sicherheitslücken – Gefahr für die Produktionstechnik
23.10.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie