Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kieler und Bochumer Forschende entwickeln neuartigen Informationsspeicher

12.10.2015

Wissenschaftler der Christian-Albrechts-Universität zu Kiel (CAU) und der Ruhr Universität Bochum (RUB) haben einen neuartigen Informationsspeicher entwickelt, der Ionen zur Speicherung und Elektronen zum Auslesen von Daten nutzt. Speicherzellen könnten damit bis in atomare Dimensionen verkleinert werden. Das ist aber nicht der einzige Vorteil der neuen Technologie, berichten die Forschenden im Fachmagazin Scientific Reports.

„Sechs plus sieben sind drei – plus eins im Sinn“, rechnet Professor Hermann Kohlstedt, Leiter der Gruppe Nanoelektronik an der Universität Kiel, vor. Damit beschreibt er, dass selbst bei einfachsten Rechenoperationen die kurz- oder langfristige Speicherung von Informationen wesentlich ist.


Mirko Hansen beim Überprüfen der hergestellten Speicherzellen mittels eines Mikroskops im Reinraum der Kieler Technischen Fakultät.

Foto/Copyright: AG Nanoelektronik

In modernen Computern wird dieser Grundsatz in praktisch jedem Bit (der Maßeinheit für digitalen Informationsgehalt) umgesetzt und die schier unglaubliche Leistungssteigerung der vergangenen Jahrzehnte beruhte dabei auf einem sehr einfachen Prinzip: immer schnellere Prozessoren und immer mehr Speicherplatz.

Übliche Informationsspeicher basieren auf Elektronen, die durch Anlegen einer Spannung verschoben werden. Die Entwicklung immer kleinerer und energieeffizienterer Speicher nach diesem Prinzip stößt aber zunehmend an ihre Grenzen: In unseren Computern gibt es nämlich nicht nur einen Speicher, sondern je nach Aufgabe mehrere optimierte.

„Das Verschieben von Daten zwischen den einzelnen Speichern nimmt mittlerweile eine nicht mehr zu vernachlässigende Zeit in Anspruch. Vereinfacht gesagt: Es wird mehr hin und her verschoben, als dass gerechnet wird“, sagt Kohlstedt. Deshalb arbeiten weltweit Industrieunternehmen und Forschungsinstitute an einem effizienteren Universalspeicher, der die Vorzüge aller Speicher vereint und möglichst wenige Daten hin und her schiebt.

Dafür wollen die Forschenden weg von den ladungsbasierten Speichern hin zu solchen, die auf dem elektrischen Widerstand beruhen. So ein Bauelement kommt nun aus den Kieler und Bochumer Laboren. Es besteht aus zwei metallischen Elektroden, welche durch einen sogenannten Festkörperionenleiter, meist ein Übergangsmetalloxid, getrennt werden.

Wird nun eine Spannung angelegt, ändert sich der ohmsche Widerstand der Speicherzelle. Dafür sorgen Oxidations- und Reduktionsprozesse an den Elektroden sowie eine Verschiebung von Ionen innerhalb der Schicht dazwischen. Der Vorteil: So aufgebaute Zellen lassen sich leicht herstellen und bis nahezu der Größe von Atomen verkleinern.

Eine hohe Speicherdauer erreichen die Wissenschaftler, indem sie die Ionendichte in den Zellen über die angelegte Spannung genau einstellen. „Das war eine große Herausforderung“, sagt Mirko Hansen, Doktorand und Erstautor der Studie aus Kohlstedts Team, denn um das zu schaffen mussten elektronische und ionische Effekte entkoppelt werden.

„Elektronen sind rund 1000 mal leichter als Ionen und bewegen sich damit deutlich leichter unter dem Einfluss einer externen Spannung. Dies konnten wir erfolgreich ausnutzen, womit in unserem Bauelement Ionen für extrem kleine Spannungen unbeweglich sind, während Elektronen mobil bleiben und zum Auslesen des Speicherzustandes verwendet werden können.“

Der Clou: Die Forschenden bauten einen nur wenige Nanometer (= ein Milliardstel Meter) dünnen Ionenleiter, um quantenmechanische Effekte für den Strom durch die Speicherzelle auszunutzen. „Der Tunneleffekt erlaubt es uns, Elektronen durch die ultradünne Schicht zu bewegen, und das mit einem sehr geringen Energieaufwand“, sagt Martin Ziegler, Koautor der Veröffentlichung aus Kiel.

Im Klartext: Ionen werden innerhalb der Speicherzelle bei Spannungen über einem Volt bewegt, Elektronen hingegen bei Spannungen weit unter einem Volt. So können Ionen gezielt zum Speichern und Elektronen zum Auslesen von Daten verwendet werden.

Die Forschung habe noch eine weitere, hochinteressante Komponente, berichten die Forschenden. Die neuen widerstandsbasierten Speicher könnten sogar Gehirnstrukturen nachbilden. Eine schnelle Mustererkennung, ein geringer Energieverbrauch verbunden mit einer enormen Parallelverarbeitung der Daten würden revolutionäre Rechnerarchitekturen erlauben. „In Verbindung mit Begriffen wie Industrie 4.0, in der autonome Roboter arbeiten, oder selbstfahrende Autos, die auf unseren Straßen unterwegs sind, eröffnet das ein riesiges Feld für Innovationen“, ordnen Professor Hermann Kohlstedt und sein Bochumer Kollege Dr. Thomas Mussenbrock die Forschungsergebnisse ein. Beide arbeiten in der „Forschergruppe 2093“ an der Entwicklung künstlicher neuronaler Netzwerke.

Originalpublikation
M. Hansen, M. Ziegler, L. Kolberg, R. Soni, S. Dirkmann, T. Mussenbrock & H. Kohlstedt. A double barrier memristive device. Published 08 September 2015, Scientific Reports 5, Article number: 13753 (2015). doi:10.1038/srep13753


Weitere Informationen:
www.for2093.uni-kiel.de

Details, die nur Millionstel Millimeter groß sind: Damit beschäftigt sich der Forschungsschwerpunkt „Nanowissenschaften und Oberflächenforschung“ (Kiel Nano, Surface and Interface Science – KiNSIS) an der Christian-Albrechts-Universität zu Kiel (CAU). Im Nanokosmos herrschen andere, nämlich quantenphysikalische, Gesetze als in der makroskopischen Welt. Durch eine intensive interdisziplinäre Zusammenarbeit zwischen Materialwissenschaft, Chemie, Physik, Biologie, Elektrotechnik, Informatik, Lebensmitteltechnologie und verschiedenen medizinischen Fächern zielt der Schwerpunkt darauf ab, die Systeme in dieser Dimension zu verstehen und die Erkenntnisse anwendungsbezogen umzusetzen. Molekulare Maschinen, neuartige Sensoren, bionische Materialien, Quantencomputer, fortschrittliche Therapien und vieles mehr können daraus entstehen. Mehr Informationen auf www.kinsis.uni-kiel.de

Kontakt:
Professor Dr. Hermann Kohlstedt
Nanoelektronik
Universität Kiel
Tel.: 0431/880 6075
E-Mail: hko@tf.uni-kiel.de


Mirko Hansen
Nanoelektronik
Universität Kiel
Tel.: 0431/880 6079
E-Mail: mha@tf.uni-kiel.de


Dr. Martin Ziegler
Nanoelektronik
Universität Kiel
Tel.: 0431/880 6067
E-Mail: maz@tf.uni-kiel.de


Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski, Text: Denis Schimmelpfennig
Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de, Jubiläum: www.uni-kiel.de/cau350 
Twitter: www.twitter.com/kieluni , Facebook: www.facebook.com/kieluni 
Link zur Pressemitteilung: http://www.uni-kiel.de/pressemeldungen/?pmid=2015-355-nanoionischer-speicher

Denis Schimmelpfennig | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Mit revolutionärer Sensor-Plattform zu IoT-Systemen der nächsten Generation
14.12.2017 | Fraunhofer IIS, Institutsteil Entwicklung Adaptiver Systeme EAS

nachricht Analyse komplexer Biosysteme mittels High-Performance-Computing
13.12.2017 | Institut für Bioprozess- und Analysenmesstechnik e.V.

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten