Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kamera nach menschlichem Auge gestaltet

07.08.2008
Flexible Elektronik ebnet Weg zum bionischen Implantat

US-Wissenschaftler haben eine Kamera entwickelt, deren Aufbau dem menschlichen Auge nachempfunden ist. Wie im natürlichen Vorbild fokussiert eine Linse das Licht auf eine gekrümmte Ebene.

Die Digitalkamera ist auch so groß wie ein menschliches Auge. Sie ermöglicht nicht nur neue Kameradesigns, sondern stellt auch einen Schritt auf dem Weg zu bionischen Augen dar. Möglich wurde die Entwicklung von Forschern der University of Illinois at Urbana-Champaign (UIUC) und der Northwestern University durch einen Trick zur Herstellung eines halbkugelförmigen Pixel-Arrays. "Dieser Zugang wird uns erlauben, Elektronik einzubinden, wo das bisher nicht möglich war", ist John Rogers, Professor für Materialwissenschaften und Ingenieurwesen an der UIUC, überzeugt.

Die augengroße Kamera, die den halbkugelförmigen Detektor mit einem zweiten hemisphärischen Element inklusive Linse verbindet, könnte nach Ansicht der Forscher die Kamera-Technologie revolutionieren. "Optische Simulationen und Bildgebungsstudien zeigen, dass diese Systeme ein viel breiteres Sichtfeld, gleichmäßigere Beleuchtung und weniger Aberrationseffekte als ebene Kameras mit vergleichbaren Linsen ermöglichen", betont Rogers. Außerdem werden Kamerasysteme möglich, die mit den bisherigen ebenen Detektoren schlichtweg nicht realisierbar waren. Auch für medizinische Anwendungen verspricht die Entwicklung Vorteile. "Hemisphärische Detektoren sind viel besser für Netzhaut-Implantate geeignet als flache", erklärt der Wissenschaftler. Die Kamera lässt sogar komplett bionische Augen erahnen, wie sie aus den Terminator-Filmen und anderer Science-Fiction bekannt sind, heißt es seitens der UIUC.

Beim verwendeten Pixel-Array haben die Forscher Fertigungstricks genutzt, um die in einem gängigen ebenen Prozess hergestellte Elektronik in die hemisphärische Form zu bringen. Sie haben eine Gummimembran der gewünschten gekrümmten Form hergestellt und dann mechanisch zu einer ebenen Fläche deformiert. Dann wurde das Pixel-Array durch einen Transfer-Prozess vom Silizium-Wafer auf die Membran übertragen. Als nächster Schritt durfte sich die Membran in ihre ursprüngliche Form entspannen, wodurch auch die Elektronik hemisphärisch wurde. Speziell entwickelte Teile haben sich dabei so von der Membran gelöst, dass sie entstehende Spannungen kompensieren und somit für Stabilität sorgen. Zum Schluss wurde das Pixel-Array von der flexiblen Membran auf eine feste Glas-Hemisphäre übertragen.

Die Augen-Kamera des amerikanischen Wissenschaftlerteams wird in der ab heute, Donnerstag, verfügbaren Ausgabe des Journals Nature genauer vorgestellt. Die Möglichkeit, flexible Elektronik-Elemente herzustellen, ist aber nicht auf Anwendungen in der Optoelektronik beschränkt und dürfte gerade im biomedizinischen Bereich in den kommenden Jahren zu weiteren Durchbrüchen führen. Rogers nannte gegenüber pressetext im März beispielsweise die Epilepsie-Therapie als einen Forschungsschwerpunkt (http://pte.at/pte.mc?pte=080329003).

Thomas Pichler | pressetext.austria
Weitere Informationen:
http://www.uiuc.edu
http://www.northwestern.edu

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Datenbrille erleichtert Gehörlosen die Arbeit in der Lagerlogistik
23.02.2018 | Technische Universität München

nachricht Verlässliche Quantencomputer entwickeln
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics