Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jülicher Supercomputer identifiziert Schlüsselfaktoren für bessere Speichermaterialien

08.07.2009
Einem internationalen Forscherteam aus Wissenschaft und Industrie unter maßgeblicher Jülicher Beteiligung ist ein Durchbruch in der Materialforschung gelungen.

Erstmals konnte das deutsch-japanische Team die lange umstrittene Struktur eines Materials überzeugend klären, das in optischen Datenspeichern, wie z.B. DVDs, verwendet wird. Mit den neuen Erkenntnissen soll sich die Suche nach leistungsfähigeren Materialien für neue Speichermedien vereinfachen.

Das Forschungsergebnis wurde möglich durch Simulationen auf dem Supercomputer "JUGENE" in Jülich und experimentelle Untersuchungen am Synchrotron "SPring-8" in Japan.

Struktur von Phasenwechsel-Speichermaterial entschlüsselt

Einem internationalen Forscherteam aus Wissenschaft und Industrie unter maßgeblicher Jülicher Beteiligung ist ein Durchbruch in der Materialforschung gelungen: Erstmals konnte das deutsch-japanische Team die lange umstrittene Struktur eines Materials überzeugend klären, das in optischen Datenspeichern, wie z.B. DVDs, verwendet wird. Mit den neuen Erkenntnissen soll sich die Suche nach leistungsfähigeren Materialien für neue Speichermedien vereinfachen. Das Forschungsergebnis wurde möglich durch Simulationen auf dem Supercomputer "JUGENE" in Jülich und experimentelle Untersuchungen am Synchrotron "SPring-8" in Japan. Die Zeitschrift "Physical Review B - Rapid Communications" berichtet darüber in ihrer aktuellen Online-Ausgabe (DOI: 10.1103/PhysRevB.80.020201).

Physikern des Forschungszentrums Jülich, Mitglied der Helmholtz-Gemeinschaft, ist es gelungen, bislang ungelöste Strukturfragen so genannter phasenwechselnder Materialen am Beispiel der Legierung Ge2Sb2Te5 (GST) aufzuklären. GST bildet das "Gedächtnis" mehrfach beschreibbarer optischer Speichermedien, wie DVD-RAM. Ähnliche Materialien werden etwa in Blu-ray-Discs eingesetzt. GST lässt sich zwischen zwei verschiedenen Zuständen, sogenannten Phasen, umschalten, einem regelmäßig geordneten "kristallinen" und einem eher ungeordneten "amorphen". Dadurch lassen sich Informationen einschreiben und speichern. Durch unterschiedliche Reflektionseigenschaften der beiden Zustände können die gespeicherten Informationen wieder ausgelesen werden. Das Umschalten geschieht wie auch das Auslesen mit einem Laser.

"Obwohl seit den 1990er-Jahren optische Speichermedien auf Basis von GST auf dem Markt sind, herrschte bis jetzt Unklarheit, wie das Schalten auf atomarer Ebene abläuft", erläutert Dr. Robert Jones, theoretischer Physiker am Forschungszentrum Jülich. "Die Umordnung der Atome verläuft in sehr kurzer Zeit, innerhalb von einigen Nanosekunden. Das hat die Frage aufgeworfen, wie die Struktur beschaffen sein muss, damit das möglich ist. Nur wenn man das weiß, kann man auch sehr gezielt nach besseren Materialien suchen." Nun sind aber Strukturen, die anders als Kristalle keine Regelmäßigkeit aufweisen, nur schwer aufzuklären. Zahlreiche Theorien wurden in den letzten Jahren aufgestellt; teilweise widersprechen sich diese aber.

Die Jülicher Physiker lösten die Frage nun mit einem schrittweisen Prozess. Sie simulierten mittels des Supercomputers JUGENE, was passiert, wenn geschmolzenes GST-Material zu einer amorphen Masse abkühlt, wie es beim Einschreiben von Informationen passiert. Ausgehend von einer ersten Berechnung passten sie ihr Modell mittels experimenteller Daten der japanischen Kooperationspartner vom Synchrotron SPring-8 Stück für Stück an, bis das Ergebnis schlüssig war.

Was ihre Untersuchungen von anderen abhebt, ist die große Dimension: 460 Atome wurden über den vergleichweise langen Zeitraum von 300 Pikosekunden untersucht. Annähernd so lang dauert es im Experiment, bis die Atome sich neu geordnet haben. Rund 4 000 der Prozessoren des Jülicher Rechners waren damit etwa vier Monate ausgelastet. "Nur an wenigen Orten auf der Welt ist es möglich, soviel Rechenleistung zu bekommen", freut sich Jones. "Dadurch waren wir in der Lage, die strukturellen Voraussetzungen zu identifizieren, die die Schlüsselfaktoren für den schnellen Phasenübergang in GST bilden."

Bei den Schlüsselfaktoren handelt es sich um viereckige Bausteine aus Atomen, die sowohl im amorphen als auch im kristallinen Material vorkommen. Jeder Baustein besteht aus vier ringförmig angeordneten Atomen, von denen jedes zweite ein Tellur-Atom ist. Die beiden übrigen Atome sind entweder Antimon- oder Germanium-Atome. Als weiterer Faktor sind Hohlräume unerlässlich, die den Bausteinen ermöglichen, sich umzuordnen, ohne viele atomare Bindungen zu brechen. Mittels eines Lasers werden dann die richtigen Bedingungen für den raschen Phasenwechsel geschaffen.

Die Ergebnisse sind ein wichtiger Schritt zum besseren Verständnis phasenwechselnder Speichermaterialien und zur Entwicklung von Designregeln für neue Datenspeicher. Ziel ist es hierbei, wichtige Materialeigenschaften in Abhängigkeit von der chemischen Zusammensetzung vorherzusagen und Materialien gezielt zu entwerfen.

Originalveröffentlichungen:
Experimentally constrained density-functional calculations of the amorphous structure of the prototypical phase-change material Ge2Sb2Te5

Phys. Rev. B 80, 020201(R) (2009); DOI: 10.1103/PhysRevB.80.020201

Structure of liquid phase change material AgInSbTe from density functional/molecular dynamics simulations

Appl. Phys. Lett. 94, 251905 (2009); DOI:10.1063/1.3157166

Structure of amorphous Ge8Sb2Te11: GeTe-Sb2Te3 alloys and optical storage
Phys. Rev. B 79, 134118 (2009); DOI: 10.1103/PhysRevB.79.134118
Structural phase transitions on the nanoscale: The crucial pattern in the phase change materials Ge2Sb2Te5 and GeTe

Phys. Rev. B 76, 235201 (2007); DOI: 10.1103/PhysRevB.76.235201

Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin,
Forschungszentrum Jülich, Institut für Festkörperforschung
52425 Jülich, Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de

Peter Schäfer | idw
Weitere Informationen:
http://www.fz-juelich.de
http://www.fz-juelich.de/iff/index.php

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht CrowdWater: eine App für die Hochwasser-Forschung
18.05.2018 | Universität Zürich

nachricht Hochautomatisiertes Sehen auf dem Prüfstand
17.05.2018 | FOKUS - Fraunhofer-Institut für Offene Kommunikationssysteme

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics