Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ionenstrahlen ebnen den Weg zu neuen Ventilen für die Spintronik

17.02.2014
Einen neuartigen Ansatz zur Herstellung von Spin-Ventilen haben Forscher am Helmholtz-Zentrum Dresden-Rossendorf (HZDR) erprobt.

Mit Ionenstrahlen konnten sie eine Eisen-Aluminium-Legierung so strukturieren, dass das Material auf der Nanometer-Skala in unterschiedlich magnetisierbare Bereiche unterteilt ist.

Die Legierung kann somit die Funktion eines Spin-Ventils ausüben, das als Bauelement für die Spintronik von großem Interesse ist. Diese Technologie nutzt für die Informationsspeicherung und -verarbeitung nicht nur die Ladung von Elektronen, sondern auch deren innere magnetische Eigenschaften (Spin). Die Spintronik hat ein großes Potenzial beispielsweise für magnetische Arbeitsspeicher.

Üblicherweise bestehen Spin-Ventile aus nicht-magnetischen und ferromagnetischen Lagen, die übereinander geschichtet werden. Das ist aufwändig, und die zuverlässige Kontaktierung dieser Bauelemente stellt hohe Anforderungen. HZDR-Forscher Dr. Rantej Bali und seine Kollegen verfolgten deshalb einen anderen Weg.

„Wir haben Strukturen mit lateraler Spinventil-Geometrie hergestellt, die unterschiedlichen magnetischen Bereiche sind hier nebeneinander angeordnet anstatt übereinander gestapelt“, so Bali. Eine parallele Bearbeitung größerer Oberflächen sollte somit einfach möglich sein und eine kostengünstige Herstellung erlauben.

Zunächst haben die Wissenschaftler eine dünne Schicht einer Eisen-Aluminium-Legierung (Fe60Al40) bei 500 Grad Celsius getempert. Dadurch bildete sich eine hochgeordnete Struktur, in der jede zweite Atomlage nur aus Eisenatomen bestand. Diese Substanz verhielt sich, wie die Forscher erwarteten, paramagnetisch – die magnetischen Momente waren also ungeordnet. Anschließend überzogen die Wissenschaftler die Legierung so mit einem Schutzlack, dass auf der Oberfläche ein Streifenmuster entstand. Die freien Bereiche waren abwechselnd zwei Mikrometer und 0,5 Mikrometer breit und durch Lackstege mit einer Breite von 40 Nanometern voneinander getrennt.

Dieses Material wurde dann im Ionenstrahlzentrum des HZDR mit Neon-Ionen bestrahlt – mit gravierenden Folgen. Wie die Forschungsergebnisse der Wissenschaftler zeigen, weist das bestrahlte Material sehr interessante Eigenschaften auf. Unter den schützenden Lackstegen bleibt es paramagnetisch. Doch die schmalen und breiten Streifen dazwischen werden ferromagnetisch. Diese Bereiche lassen sich magnetisieren. „Ein Spin-Ventil wird über das Magnetfeld geschaltet. Je nach Orientierung der Spins – parallel oder antiparallel – ändert sich der elektrische Widerstand. Wir interessieren uns für die Größe des Effektes“, sagt Bali. Ein von außen angelegtes Magnetfeld bewirkt, dass sich die Spins in diesen Bereichen geordnet ausrichten. Je nach Stärke des Magnetfelds können sie parallel oder antiparallel eingestellt werden. Diese Magnetisierung ist permanent und geht nicht verloren, wenn das äußere Feld abgeschaltet wird.

Die Ursache für dieses Verhalten liegt darin, dass die Ionenstrahlen die Struktur der Legierung verändern. „Die geordnete Struktur mit den Eisen-Lagen wird durch die Ionen zerstört. Die Ionen stoßen die Atome von ihren Plätzen, und andere Atome füllen diese Plätze auf. Eisen- und Aluminiumatome sind danach zufällig verteilt“, erläutert Sebastian Wintz, der als Doktorand an den Forschungsarbeiten beteiligt war. Für dieses Bäumchen-Wechsel-Dich-Spiel auf atomarer Ebene genügt eine geringe Ionendosis. „Es ist eine Kaskade“, beschreibt Wintz den Vorgang, „ein einziges Ion kann bis zu 100 Atome deplatzieren.“ In die Bereiche unter den Lackstegen können die Ionen hingegen nicht eindringen. Daher bleiben diese Regionen paramagnetisch, und sie trennen die ferromagnetischen Streifen voneinander.

In Zusammenarbeit mit Wissenschaftlern vom Helmholtz-Zentrum Berlin gelang es, die magnetische Struktur des Materials sichtbar zu machen. Dazu wurde das Spezial-Mikroskop SPEEM (spin-resolved photoemission microscope) genutzt, das am Synchrotron BESSY 2 betrieben wird. Die mikroskopischen Aufnahmen lassen die unterschiedlich magnetisierten Bereiche erkennen und zeigen, welch hohe räumliche Auflösung bei dem Strukturierungsverfahren erreicht werden kann.

In weiteren Versuchen wollen Rantej Bali und seine Kollegen nun die Eigenschaften des magnetisch strukturierten Materials weiter untersuchen. Außerdem möchten die Forscher herausfinden, ob eine weitere Miniaturisierung möglich ist. Je kleiner Bauelemente wie Spin-Ventile sind, umso leistungsfähiger werden die elektronischen Bauteile.

Text: Uta Bilow

Publikation: Rantej Bali u.a., Nano Letters 14, 435 (2014), DOI: 10.1021/nl404521c

Weitere Informationen:
Dr. Rantej Bali / Sebastian Wintz
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel. +49 351 260-2919
E-Mail: r.bali@hzdr.de / s.wintz@hzdr.de
Medienkontakt:
Dr. Christine Bohnet | Pressesprecherin
Tel. +49 351 260 - 2450 oder +49 160 969 288 56 | c.bohnet@hzdr.de |
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden

Dr. Christine Bohnet | Helmholtz-Zentrum
Weitere Informationen:
http://www.hzdr.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Erster Modularer Supercomputer weltweit geht am Forschungszentrum Jülich in Betrieb
14.11.2017 | Forschungszentrum Jülich GmbH

nachricht Online-Computerspiele verändern das Gehirn
09.11.2017 | Universität Ulm

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte