Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Internationalem Forscherteam gelingt die kontrollierte Bewegung von Skyrmionen

02.03.2016

Magnetische Wirbel als Datenspeicher der Zukunft: Grundlagen für die Nutzung von Skyrmionen für anwendungsrelevante Systeme gelegt

Einem gemeinsamen Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und dem Massachusetts Institute of Technology (MIT) ist ein Durchbruch in der Grundlagenforschung für mögliche Datenspeichertechnologien der Zukunft gelungen.


Die magnetische Struktur eines Skyrmions ist symmetrisch um dessen Kern; Pfeile zeigen die Richtung der Spins an.

Abb./©: Benjamin Krüger, JGU

Die Idee dabei ist es, elektronische Speichereinheiten (Bits) nicht wie bisher üblich auf rotierenden Festplatten zu speichern, sondern als magnetische Wirbelstrukturen, sogenannte Skyrmionen, auf einem Nanodraht wie in einem Schieberegister abzulegen.

Die magnetischen Skyrmion-Bits könnten damit schnelle Zugriffszeiten, hohe Speicherdichten und eine gesteigerte Energieeffizienz erreichen. Im Rahmen der jetzigen Arbeit wurden einzelne Skyrmionen bei Raumtemperatur erstmals gezielt durch Strompulse verschoben. Die Forschungsarbeit wurde im Fachmagazin Nature Materials publiziert.

Magnetische Skyrmionen sind spezielle Spinstrukturen, die in Materialien und insbesondere in dünnen Schichten auftreten können, wenn deren Inversionssymmetrie gebrochen ist. In den hier betrachteten Systemen bedeutet dies, dass ein dünner Metallfilm verwendet wird, dessen Schichtenaufbau nicht symmetrisch ist.

In diesem Fall können sich Spinstrukturen bilden, die sich ähnlich verhalten wie ein Haarwirbel: So schwierig es sein kann, diesen Wirbel zu glätten, so schwer ist es, das Skyrmion zu zerstören, was ihm gesteigerte Stabilität verleiht.

Eine wichtige Eigenschaft der Skyrmionen ist es nun, dass sie isoliert in magnetischen Materialien existieren können und generell ungern mit dem Rand einer Struktur kollidieren. Dies verleiht ihnen die einzigartige Fähigkeit, isolierte Defekte im Material oder Eckenrauigkeit zu umgehen, während andere magnetische Strukturen wie Domänenwände damit kollidieren würden.

Skyrmionen sind damit exzellente Kandidaten für das magnetische Schieberegister, den Racetrack-Speicher: Informationen könnten in Skyrmionen kodiert und diese dann mit Strom an festen Lese- und Schreibköpfen vorbeibewegt werden. Das Prinzip wäre sowohl schnell als auch völlig unabhängig von beweglichen mechanischen Teilen und damit für mobile Anwendungen ideal geeignet.

Im Rahmen der Forschungsarbeit wurde bewiesen, dass individuelle Skyrmionen bei Raumtemperatur tatsächlich in einem magnetischen Draht, einem Racetrack, kontrolliert durch kurze Strompulse bewegt werden können. Des Weiteren wurden neue Methoden zur Beschreibung ihrer Dynamik etabliert und experimentell bestätigt. Die Arbeit kann damit als Grundstein für die Verwendung von Skyrmionen in anwendungsrelevanten Systemen angesehen werden.

„Es ist immer schön zu sehen, wenn ein gemeinsames Projekt schnell zu spannenden Ergebnissen führt. Bei diesem hier gilt das ganz besonders, da wir innerhalb von nur einem Jahr nach der Vereinbarung der Kooperation bereits diese Veröffentlichung schreiben konnten. Ihre Fertigstellung wäre ohne die enge Zusammenarbeit zwischen JGU und MIT und den regen Austausch nicht zustande gekommen“, merkte Kai Litzius, Koautor der Veröffentlichung, an. Seine Arbeit erfolgte als Stipendiat der Exzellenz-Graduiertenschule „Materials Science in Mainz" (MAINZ) in der Gruppe von Univ.-Prof. Dr. Mathias Kläui.

„Mich hat die effiziente Zusammenarbeit und die nachhaltige Kooperation mit Gruppen am MIT sehr gefreut. Nach einer Anschubfinanzierung durch ein Kooperationsprojekt finanziert durch das BMBF konnten wir unter anderem durch mehrere Aufenthalte von Studenten am MIT seit 2014 sechs gemeinsame Publikationen veröffentlichen“, sagte Kläui, Professor am Institut für Physik und Direktor von MAINZ.

Die Graduiertenschule MAINZ wurde in der Exzellenzinitiative des Bundes und der Länder im Jahr 2007 bewilligt und erhielt in der zweiten Runde 2012 eine Verlängerung. Sie besteht aus Arbeitsgruppen der Johannes Gutenberg-Universität Mainz, der Technischen Universität Kaiserslautern und des Max-Planck-Instituts für Polymerforschung. Einer der Forschungsschwerpunkte ist die Spintronik, wobei die Zusammenarbeit mit führenden internationalen Partnern eine wichtige Rolle spielt.

Veröffentlichung:
Seonghoon Woo et al.
Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets
Nature Materials, 29. Februar 2016
DOI: 10.1038/nmat4593

Weitere Informationen:
Univ.-Prof. Dr. Mathias Kläui
Physik der Kondensierten Materie
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-23633
E-Mail: klaeui@uni-mainz.de
http://www.klaeui-lab.physik.uni-mainz.de/308.php

Exzellenz Graduiertenschule Materials Science in Mainz
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-26984
Fax +49 6131 39-26983
E-Mail: mainz@uni-mainz.de
http://www.mainz.uni-mainz.de/

Weitere Links:
http://palgrave.nature.com/nmat/journal/vaop/ncurrent/full/nmat4593.html (Abstract)
https://www.uni-mainz.de/presse/63817.php (Pressemitteilung vom 03.02.2015 „Physiker beobachten Bewegung von winzigen Magnetisierungswirbeln“)

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Human Brain Project: Pilotsysteme für interaktiven Superrechner gestartet
28.09.2016 | Forschungszentrum Jülich

nachricht Wald in Inventur: Unbemannte Helikopter zur Datenerhebung
28.09.2016 | Alpen-Adria-Universität Klagenfurt

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Der perfekte Sonnensturm

Ein geomagnetischer Sturm hat sich als Glücksfall für die Wissenschaft erwiesen. Jahrzehnte rätselte die Forschung, wie hoch energetische Partikel, die auf die Magnetosphäre der Erde treffen, wieder verschwinden. Jetzt hat Yuri Shprits vom Deutschen GeoForschungsZentrum GFZ und der Universität Potsdam mit einem internationalen Team eine Erklärung gefunden: Entscheidend für den Verlust an Teilchen ist, wie schnell die Partikel sind. Shprits: „Das hilft uns auch, Prozesse auf der Sonne, auf anderen Planeten und sogar in fernen Galaxien zu verstehen.“ Er fügt hinzu: „Die Studie wird uns überdies helfen, das ‚Weltraumwetter‘ besser vorherzusagen und damit wertvolle Satelliten zu schützen.“

Ein geomagnetischer Sturm am 17. Januar 2013 hat sich als Glücksfall für die Wissenschaft erwiesen. Der Sonnensturm ermöglichte einzigartige Beobachtungen, die...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: Neuer Schalter entscheidet zwischen Reparatur und Zelltod

Eine der wichtigsten Entscheidungen, die eine Zelle zu treffen hat, ist eine Frage von Leben und Tod: kann ein Schaden repariert werden oder ist es sinnvoller zellulären Selbstmord zu begehen um weitere Schädigung zu verhindern? In einer Kaskade eines bisher wenig verstandenen Signalweges konnten Forscher des Exzellenzclusters für Alternsforschung CECAD an der Universität zu Köln ein Protein identifizieren (UFD-2), das eine Schlüsselrolle in dem Prozess einnimmt. Die Ergebnisse wurden in der Fachzeitschrift Nature Structural & Molecular Biology veröffentlicht.

Die genetische Information einer jeden Zelle liegt in ihrer Sequenz der DNA-Doppelhelix. Doppelstrangbrüche der DNA, die durch Strahlung hervorgerufen werden...

Im Focus: Forscher entwickeln quantenphotonischen Schaltkreis mit elektrischer Lichtquelle

Optische Quantenrechner könnten die Computertechnologie revolutionieren. Forschern um Wolfram Pernice von der Westfälischen Wilhelms-Universität Münster sowie Ralph Krupke, Manfred Kappes und Carsten Rockstuhl vom Karlsruher Institut für Technologie ist es nun gelungen, einen quantenoptischen Versuchsaufbau auf einem Chip zu platzieren. Damit haben sie eine Voraussetzung erfüllt, um photonische Schaltkreise für optische Quantencomputer nutzbar machen zu können.

Ob für eine abhörsichere Datenverschlüsselung, die ultraschnelle Berechnung riesiger Datenmengen oder die sogenannte Quantensimulation, mit der hochkomplexe...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

EEHE 2017 – Strom statt Benzin. Experten diskutieren die Umsetzung neuester Fahrzeugkonzepte. Call vor Papers endet am 31.10.2016!

28.09.2016 | Veranstaltungen

Folgenschwere Luftverschmutzung: Forum zur Chemie der Atmosphäre

28.09.2016 | Veranstaltungen

European Health Forum Gastein 2016 beginnt

28.09.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EEHE 2017 – Strom statt Benzin. Experten diskutieren die Umsetzung neuester Fahrzeugkonzepte. Call vor Papers endet am 31.10.2016!

28.09.2016 | Veranstaltungsnachrichten

Wie Blockchain die Finanzwelt verändert

28.09.2016 | Wirtschaft Finanzen

Neue Plasmaanlage - Präzise und hoch entwickelte Chips

28.09.2016 | Physik Astronomie