Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Intelligente Robotersteuerung durch adaptives Embedded Brainreading

22.07.2015

Ob im Weltall, in der Produktionshalle oder bei der Rehabilitation von Schlaganfallpatienten – das Robotics Innovation Center des Deutschen Forschungszentrums für Künstliche Intelligenz (DFKI) GmbH und die Arbeitsgruppe Robotik der Universität Bremen – beide unter der Leitung von Prof. Dr. Frank Kirchner – haben im Projekt IMMI (Intelligentes Mensch-Maschine-Interface) Schlüsseltechnologien für die Steuerung von Robotern entwickelt, die echtzeitfähiges und adaptives Embedded Brain Reading in vielen Anwendungsbereichen ermöglichen.

Die Raumfahrt-Agentur des Deutschen Zentrums für Luft- und Raumfahrt e.V. (DLR) förderte das Projekt mit Mitteln des Bundesministeriums für Wirtschaft und Energie (BMWi) über fünf Jahre mit rund 3,7 Mio. Euro.


Robotersteuerung mittels der im DFKI-Projekt IMMI entwickelten Technologien.

DFKI GmbH

Neurowissenschaftler, Informatiker, Mathematiker, Physiker und Ingenieure arbeiteten in IMMI gemeinsam an einer intelligenten Mensch-Maschine-Schnittstelle, die nicht nur die intuitive und effektive Steuerung eines oder mehrerer Roboter ermöglicht, sondern sich auch selbstständig an Änderungen des mentalen Zustands des Nutzers und an wechselnde Benutzer anpassen kann.

Im Gegensatz zu klassischen Brain-Computer-Interfaces basiert das entwickelte System auf der passiven Beobachtung des Operators durch Embedded Brain Reading. Dafür trägt der Operator eine mit Elektroden bestückte Kappe, die es dem System mittels Elektroenzephalografie (EEG) ermöglicht, die Gehirnaktivität zu messen und spezifische Änderungen von Gehirnströmen zu interpretieren.

Diese Änderungen erlauben zum Beispiel Aussagen über den Stand der Verarbeitung von präsentierter Information, über die Absichten des Operators oder über dessen kognitive Auslastung. Die Schnittstelle erhält dadurch wichtige Informationen, um den Menschen proaktiv in kritischen Situationen zu unterstützen oder die Effektivität der Steuerung anwenderspezifisch zu steigern.

Hat der Operator beispielsweise eine vom Roboter gesendete Warnmeldung übersehen, so weist ihn das System erneut darauf hin; ist der Anwender kognitiv überfordert, so wird seine Belastung reduziert.

Um die Handlungsabsicht und Aufgabenauslastung des Operators präzise einschätzen zu können, setzen die Forscherinnen und Forscher zusätzlich zum EEG auf Elektromyografie (EMG) zur Messung der Muskelaktivität und auf Eye-Tracking, das die Blickrichtung registriert. Auf diese Weise entsteht ein umfassendes Bild des kognitiven Zustands des Anwenders.

Die Schnittstelle lernt aus diesen Daten und darauffolgenden Handlungen, welche Sequenzen in den Hirnströmen eine Wahrnehmung oder Aktion bedeuten. Auf diese Weise kann sich das System in Echtzeit an wechselnde Zustände des Benutzers und sogar automatisch an neue Benutzer anpassen.

Die Vielzahl komplizierter mathematischer Verfahren, die beim echtzeitfähigen und adaptiven Brain Reading zur Anwendung kommt, erfordert eine besonders große Rechenleistung. Gleichzeitig soll der Operator möglichst mobil sein und sich frei bewegen können, was den Einsatz großer Rechner ausschließt.

Aus diesen Gründen wurde in IMMI ein kompaktes Brain-Reading-System entwickelt, das eine normale CPU mit einem FPGA (Field Programmable Gate Array) auf einer 7 x 10 cm großen Elektronikplatine kombiniert. FPGAs ermöglichen parallele Verarbeitungsoperationen und können daher große Datenmengen in kürzester Zeit verarbeiten. Das entwickelte System kann entweder eigenständig mobil oder zur Optimierung von Embedded Brain Reading in ein technisches System eingebettet angewendet werden.

Die Software-Frameworks pySPACE und reSPACE wurden im Projekt eigens für die Verarbeitung großer Datenmengen entwickelt. Die Open-Source-Software pySPACE erlaubt eine einfache Konfiguration und parallele Ausführung komplexer Vergleiche sowie die Optimierung und Visualisierung von über 200 verschiedenen Verarbeitungs- und Auswertungsmethoden.

Über eine automatisch erzeugte Hochleistungsschnittstelle kann pySPACE auf reSPACE zugreifen und dadurch zeitkritische Verarbeitungsschritte auf den FPGA auslagern. Mit Hilfe von reSPACE können anwendungsspezifische Hardwarebeschleuniger die Verarbeitung der Daten besonders effizient und in Echtzeit durchführen.

Neben Anwendungen in der Raumfahrt sollen die in IMMI entwickelten Technologien auch in der medizinischen Rehabilitation eingesetzt werden. Im kürzlich gestarteten Projekt RECUPERA-Reha arbeiten DFKI-Wissenschaftlerinnen und Wissenschaftler an Methoden zum Aufbau eines innovativen und mobilen Ganzkörper-Exoskeletts, das durch die Vorhersage von Bewegungsabsichten auf Basis der in IMMI entwickelten Technologien, Schlaganfall-Patienten rehabilitativ unterstützen soll.

DFKI-Kontakt
Dr. rer. nat. Elsa Andrea Kirchner
Robotics Innovation Center
E-Mail: Elsa.Kirchner@dfki.de
Tel.: 0421 178 45 4113

DFKI-Pressekontakt
Unternehmenskommunikation Bremen
E-Mail: uk-hb@dfki.de
Tel.: 0421 178 45 4180

Andrea Fink | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.dfki.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Deep Learning und KI in der Motorenentwicklung – IAV und DFKI eröffnen gemeinsames Forschungslabor
23.01.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder
19.01.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics