Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Innovationen aus Dresden ermöglichen schnellen Einsatz der 28-Nanometer-CMOS-Technologie

02.09.2011
Sachsens Spitzencluster „Cool Silicon“ treibt die Entwicklung von Entwurfswerkzeugen und Fertigungstechnologien der übernächsten Generation voran und sichert so dem Standort Deutschland einen entscheidenden Wettbewerbsvorsprung.

Modernste Technologien für den Entwurf und die Fertigung von energieeffizienten und zugleich besonders leistungsfähigen analog-digitalen Schaltkreisen entwickelt der sächsische Spitzencluster „Cool Silicon“. Sie werden unter anderem dazu beitragen, den Stromverbrauch von integrierten Schaltungen wesentlich zu senken, die in großen Stückzahlen für den Einsatz in der mobilen Kommunikation gefertigt werden.

An dem Forschungsprojekt „Design- und Technologieplattform für den Entwurf von hocheffizienten, integrierten Hochfrequenzschaltungen in 28 Nanometer CMOS (Cool-RF-28)“ beteiligen sich der Chiphersteller GLOBALFOUNDRIES und die Intel Mobile Communications GmbH sowie die TU Dresden mit den Lehrstühlen für Schaltungstechnik und Netzwerktheorie (LSN), geleitet von Professor Dr. Frank Ellinger, und für Hochparallele VLSI-Systeme und Neuromikroelektronik unter der Leitung von Professor Dr.-Ing. habil. René Schüffny. Das Projekt wird von Dr. Carta, LSN, koordiniert.

Ziel dieses Forschungsprojektes ist es, den Entwurf und die Fertigung von Schaltkreisen, die analoge und digitale Bausteine kombinieren, in 28-Nanometer-CMOS-Technologie zu ermöglichen. Derartige Schaltkreise werden derzeit mit Strukturbreiten von 90 bzw. 65 Nanometern hergestellt. Die Dresdner wollen die Miniaturisierung entschieden vorantreiben, und dabei auf einen Zwischenschritt bei 45 Nanometern verzichten.

Die beschleunigte Skalierung bringt Vorteile: „Die 28-Nanometer-CMOS-Technologie ermöglicht im Vergleich zum Stand der Technik einen wesentlich geringeren Energieverbrauch, sowie massiv höhere Arbeitsfrequenzen“, erläutert Professor Dr. Frank Ellinger, der Koordinator des Forschungsprojektes.Doch üblicherweise sind es andere Typen von Schaltkreisen, die das Tempo der technologischen Weiterentwicklung bestimmen. Die Verkleinerung der Strukturen, die sogenannte Skalierung, startet bei den Speicherchips und bei den Prozessoren. Diese komplexen digitalen Strukturen werden am schnellsten mit neuen Technologien produziert, und daher sind für sie auch zuerst Designkits verfügbar. „Bauelemente für Hochleistungs-Analogfunktionen hingegen stehen zum Zeitpunkt der Einführung einer neuen CMOS-Technologie typischerweise noch nicht zur Verfügung“, erläutert Ellinger.

„Somit gibt es unter anderem keine optimierten passiven Komponenten, und auch keine Hochfrequenztransistormodelle mit der für schmalbandig angepasste Hochfrequenzschaltungen erforderlichen Genauigkeit.“ Das wollen die beteiligten Wissenschaftler ändern. Unter dem Dach von „Cool Silicon“ entwickeln sie optimierte passive Komponenten und Hochfrequenzmodelle für zentrale Bauelemente.

Das Projekt geht aber deutlich darüber hinaus: „Cool-RF-28 umfasst Verbesserungen auf Technologie-, Modellierungs- und Schaltungsebene“, erläutert Ellinger. „Wichtig ist dabei das beständige Feedback zwischen den Ebenen – nur so lässt sich eine Technologie ganzheitlich optimieren.“ Die Forscher werden daher an den Fertigungsmethoden, dem Designkit, den Modellierungen und Simulationen sowie an den Testverfahren teilweise parallel arbeiten. Das Designkit soll 2013 verfügbar sein; die ersten Testwafer mit Schaltkreisen, die mit diesem innovativen Werkzeug entworfen wurden, sollen dann in der Dresdner Fab von GLOBALFOUNDRIES gefertigt werden, um den Wissenschaftlern für Untersuchungen zur Verfügung zu stehen.

Im Ergebnis sollen letztendlich hocheffiziente Hochfrequenz-Schaltkreise entstehen, wie sie für die moderne Kommunikationstechnik im Mobilfunk-Bereich, aber auch für ultraschnelle Millimeterwellen-WLAN-Kommunikationstechnik benötigt werden. Die Dresdner Wissenschaftler entwickeln zudem Selbsttestschaltungen, die eine kostengünstige Selektion von Schaltungen und eine Optimierung der Qualitätssicherung während der Fertigung ermöglichen. Diese drei Schaltungstypen dienen zudem zur Verifikation der Designplattform.

Das Designkit, das durch das Forschungsprojekt entwickelt wird, kann darüber hinaus mit einem bei GLOBALFOUNDRIES existierenden Basis-Designkit zu einer System-on-Chip (SoC)-Designplattform vereint werden. Dadurch wird der Entwurf von digitalen wie auch von anspruchsvollen analogen Schaltungen in derselben Technologie von Beginn an ermöglicht. „Unser Unternehmen, das zu den weltweit führenden Auftragsfertigern gehört, ist sehr daran interessiert, seinen Kunden die bestmögliche Unterstützung beim Entwurf zu bieten. Mit einer SoC-Designplattform für die 28-Nanometer-Technologie könnte Globalfoundries seine Wettbewerbsposition deutlich stärken“, sagt Wolfgang Finger, Senior Manager Design Engineering, GLOBALFOUNDRIES Fab 1 in Dresden.

Über Cool Silicon:
Cool Silicon ist ein mehrjähriges Forschungsprojekt, das im Rahmen der Spitzencluster-Initiative des Bundesministeriums für Bildung und Forschung gefördert wird. Über 60 Unternehmen und Forschungseinrichtungen im Silicon Saxony haben sich in dem Projekt zusammengeschlossen, um in den nächsten Jahren Technologien zu entwickeln, die den Energieverbrauch von Mikrochips und Informationstechnologien deutlich senken sollen.
Für Rückfragen zum Projekt:
Cool Silicon e.V.
c/o Silicon Saxony Management GmbH
Herr Thomas Reppe
Manfred-von-Ardenne-Ring 20
01099 Dresden
Germany

Pressekontakt:
Robert Weichert, Telefon: 0351 / 50 14 02 02, 0151 / 41 92 46 64,
E-Mail: robert.weichert@pr-piloten.de
Ulf Mehner, Telefon: 0351 / 50 14 02 02, 0172 / 893 53 17,
E-Mail: ulf.mehner@pr-piloten.de

Robert Weichert | PR Piloten
Weitere Informationen:
http://www.cool-silicon.org
http://www.spitzencluster.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Datenbrille erleichtert Gehörlosen die Arbeit in der Lagerlogistik
23.02.2018 | Technische Universität München

nachricht Verlässliche Quantencomputer entwickeln
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics